Degree competences to which the subject contributes

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

- Lectures
- Individual work (distance)
- Exercises
- Oral presentations

Learning objectives of the subject

The aim of the Electronic Devices Modeling course is to understand the performance of modern electronic devices using TCAD and Compact Modeling tools. Principles of the DC, AC, RF, Noise, Large-Signal, Temperature, and Optoelectronic modeling of semiconductor devices are explained and their application to modern devices (CMOS, FinFET, CNFET, GFET, HBT, HEMT, LEDs, Solar Cells,¿) is analysed.

Learning results of the subject:

- Ability to understand TCAD and Compact Modeling tools of electronic devices.
- Ability to understand the principles of the DC, AC, RF, Noise, Large-Signal, Temperature, and Optoelectronic performance of semiconductor devices.
- Ability to analyze and develop models of field effect devices: CMOS, FinFET, CNFET, and GFET.
- Ability to analyze and develop models of bipolar devices: BJT, and HBT.
- Ability to analyze and develop models of optoelectronic devices: Solar Cells and LEDs.
- Ability to understand electrical function of modern electronic devices: Field Effect Devices, Bipolar Devices and Optoelectronic Devices.
- Ability to understand DC, AC, RF, Large-Signal, Noise and Temperature performance of electronic devices.
- Ability to model electronic semiconductor devices using TCAD tools.
230670 - EDM - Electronic Devices Modelling

- Ability to develop analytical and compact models for low and high frequency integrated electronic devices.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 125h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>39h</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
</tr>
</tbody>
</table>

- Total learning time: 125h
 - Hours large group: 39h (31.20%)
 - Hours medium group: 0h (0.00%)
 - Hours small group: 0h (0.00%)
 - Guided activities: 0h (0.00%)
 - Self study: 86h (68.80%)
<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Introduction to TCAD and compact modeling</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>? Subject contents and presentation</td>
<td></td>
</tr>
<tr>
<td>? Compact modeling</td>
<td></td>
</tr>
<tr>
<td>? TCAD modeling</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Technology Computer Aided Design (TCAD) Modeling: using ATLAS</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Technology Computer Aided Design (TCAD) Modeling: using ATLAS</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>? Structure</td>
<td></td>
</tr>
<tr>
<td>? Materials</td>
<td></td>
</tr>
<tr>
<td>? Mathematics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Compact Modeling: using IC-CAP and MATLAB</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Compact Modeling: using IC-CAP and MATLAB</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>? IC-CAP Basic</td>
<td></td>
</tr>
<tr>
<td>? MATLAB Basic</td>
<td></td>
</tr>
</tbody>
</table>
4. Semiconductors

Description:
Theory and modeling of Semiconductors

Specific objectives:
- Semiconductor equations
- Energy band parameters
- Material parameters

Learning time: 9h
- Theory classes: 3h
- Self study: 6h

5. Junctions

Description:
Theory and modeling of Junctions

Specific objectives:
- PN homojunctions
- Heterojunctions

Learning time: 9h
- Theory classes: 3h
- Self study: 6h

6. Metal-semiconductor junctions

Description:
Theory and modeling of Metal-semiconductor junctions

Specific objectives:
- Metal-semiconductor theory
- Metal-semiconductor TCAD

Learning time: 6h 18m
- Theory classes: 0h 18m
- Self study: 6h
7. Graphene

Learning time: 6h 18m
- Theory classes: 0h 18m
- Self study: 6h

Description:
Theory and modeling of Graphene

Specific objectives:
- Graphene physics
- Graphene electrical properties
- Applications of Graphene

8. Optoelectronics modeling

Learning time: 6h 18m
- Theory classes: 0h 18m
- Self study: 6h

Description:
Theory and modeling of optoelectronics devices

9. Direct current (DC) modeling

Learning time: 6h 18m
- Theory classes: 0h 18m
- Self study: 6h

Description:
Direct current (DC) modeling of electronic devices

Specific objectives:
- DC datasheets
- DC measurements
- DC modeling
10. Alternating current (AC) modeling

Learning time: 6h 18m
Theory classes: 0h 18m
Self study: 6h

Description:
Alternating current (AC) modeling of electronic devices

Specific objectives:
- AC datasheets
- AC measurements
- AC modeling

11. Radio frequency (RF) and Microwave modeling

Learning time: 9h
Theory classes: 3h
Self study: 6h

Description:
Radio frequency (RF) and Microwave modeling of electronic devices

Specific objectives:
- RF and Microwave datasheets
- RF and Microwave measurements
- RF and Microwave modeling

12. Noise modeling

Learning time: 9h
Theory classes: 3h
Self study: 6h

Description:
Noise modeling of electronic devices
Planning of activities

EXERCISES
Description:
Exercises to strengthen the theoretical knowledge.

INDIVIDUAL HOMEWORK
Description:
Modeling of an electronic device.

ORAL PRESENTATION
Description:
Presentation of a work about modeling of an electronic device.

Qualification system
Exercises: from 50 % to 70 %
Individual assessments: from 20 % to 40 %
Oral presentations: from 10 % to 20 %

Bibliography

Basic:

Others resources: