Course guides
230672 - EIS - Electronics Instrumentation Systems for Marine Applications

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.
Degree: MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Optional subject).
 DEGREE IN ELECTRONIC ENGINEERING (Syllabus 1992). (Optional subject).
 MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Optional subject).
Academic year: 2015 ECTS Credits: 5.0 Languages: English

LECTURER
Coordinating lecturer: JOAQUÍN DEL RÍO FERNÁNDEZ
Others: SPARTACUS GOMARIZ CASTRO, ANTONI MÀNUEL LÀZARO

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
1. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

2. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

3. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

- Lectures
- Collaborative lecture
- Laboratory practical work
- Project based learning
- Autonomous work
- Tutoring
- Extended answer test (Final Exam)
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

At the end of this matter is expected that the student be able to practically apply the knowledge and skills of the degree to electronic systems used in the marine environment. It is expected that the student is able to demonstrate knowledge of special methods of acquisition and transmission of information, and the design of the measuring instruments involved in the fields of research and technological development and fisheries oceanography. It will also be able to distinguish and differentiate the different types of underwater observation infrastructures as networks of sensors and undersea vehicles. In addition the student will demonstrate an understanding of the general concepts of the marine environment that affect climate change, sustainability of biological systems and the monitoring of natural hazards.

The aim of this course is to train students in methods of design, dimensioning and evaluation of data communications networks. First, we consider the parameters of interest for telematics network planning and mathematical tools we have. Then, using this knowledge, will study data routing mechanisms, network allocation capacity, congestion control and multiple access techniques.
- Ability to understand and interpret the functioning technical characteristics of the measuring equipment most commonly used in the marine environment (CTDs, hydrophones, etc.).
- Ability to understand the need of underwater robotics and interpret technical and operational characteristics of the different vehicles. ROV, AUV and Gliders.
- Ability to perform the specification, implementation, documentation and commissioning of equipment and systems, considering both the technical and corresponding regulatory standards.
- Ability to specify, design and use, electronic instrumentation and measurement systems applied to the marine environment, both in research and application through to the fishing fleet.
- Capacity to analyzes the needs of power consumption and power measuring equipment, for optimization and increase autonomy.
- Ability to understand the different environmental parameters involved in climate change.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>13,0</td>
<td>10.40</td>
</tr>
<tr>
<td>Hours small group</td>
<td>26,0</td>
<td>20.80</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

1. Introduction to oceanographic measurement systems

Description:
Characteristics, applications and technology challenges

Full-or-part-time: 10h
Theory classes: 3h
Self study : 7h
2. The marine environment

Description:

Full-or-part-time: 16h
Theory classes: 2h
Laboratory classes: 2h
Self study : 12h

3. Underwater acoustic Communications

Description:

Full-or-part-time: 19h
Theory classes: 5h
Laboratory classes: 2h
Self study : 12h

4. Marine technology for scientific studies and environmental management

Full-or-part-time: 18h
Theory classes: 3h
Laboratory classes: 2h
Self study : 13h

5. Infrastructure for observation

Description:
Marine sensor networks. Smart sensors (IEEE 1451) for the measurement of physical and / or chemical compatible with cabled observatories connection (OBSEA). Presentation of current standards promoted by OGC (Open Geospatial Consortium) or GEOSS as SensorML. Synchronization in sensor network. NTP (Network Time Protocol). Or IEEE 1588 PTP (Precision Time Protocol).

Full-or-part-time: 20h
Theory classes: 5h
Laboratory classes: 2h
Self study : 13h
6. Underwater vehicles

Description:

Full-or-part-time: 20h
Laboratory classes: 2h
Self study: 5h
Self study: 13h

7. Navigation sensors and payload

Description:

Full-or-part-time: 22h
Theory classes: 6h
Laboratory classes: 3h
Self study: 13h

ACTIVITIES

LABORATORY 1

Description:

LABORATORY 2

Description:

LABORATORY 3

Description:
Introduction to communication systems. Transducers and acoustic modems. Release systems. Acoustic systems employed in the fisheries sector. Sounders.

LABORATORY 4

Description:
LABORATORY 5
Description:
Presentation Guanay II AUV. Identification of different subsystems. Commissioning and connection of control systems, propulsion and investment, communication, security, use of the graphical interface to mission control.

LABORATORY 6
Description:
Introduction to navigation systems. Calibration and communication of the various navigation sensors. INS, compass and inclinometer. Assembly and handling from the control unit.

GRADING SYSTEM
Final examination: 20%
Exercises: 10%
Individual assessments: 15%
Group assessments: 15%
Laboratory assessments: 40%

BIBLIOGRAPHY
Basic:

RESOURCES
Other resources:
Scientific papers from Journal of Oceanic Engineering Society http://www.oceanicengineering.org