Course guides
230673 - EMC - Emc in Electronic Design

<table>
<thead>
<tr>
<th>Unit in charge:</th>
<th>Barcelona School of Telecommunications Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>710 - EEL - Department of Electronic Engineering.</td>
</tr>
<tr>
<td>Degree:</td>
<td>MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Optional subject).</td>
</tr>
<tr>
<td></td>
<td>ERASMUS MUNDUS MASTER'S DEGREE IN PHOTONICS ENGINEERING, NANOPHOTONICS AND BIOPHOTONICS (Syllabus 2010). (Optional subject).</td>
</tr>
<tr>
<td></td>
<td>MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).</td>
</tr>
<tr>
<td>Academic year:</td>
<td>2020</td>
</tr>
<tr>
<td>ECTS Credits:</td>
<td>5.0</td>
</tr>
<tr>
<td>Languages:</td>
<td>English</td>
</tr>
</tbody>
</table>

LECTURER

- **Coordinating lecturer:** Silva Martínez, Ferran
- **Others:** Silva Martínez, Ferran
 Pous Sola, Marc

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:

1. **EFFECTIVE USE OF INFORMATION RESOURCES:** Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

2. **FOREIGN LANGUAGE:** Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

- Laboratory practical work
- Short answer test (Control)
- Short answer test (Final Exam)
- Extended answer test (Final Exam)
LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:

The aim of this course is to train students in including electromagnetic compatibility issues to consider the design of electronic products. First we consider the mandatory international standards and tests. Then, they will study specific electronic design technique to fulfil these requirements.

Learning results of the subject:

- Ability to understand and apply EMC international standards.
- Ability to perform radiated and conducted tests, including ESD, to evaluate electronic designs emissions and immunity.
- Ability to apply specific electronic design techniques to reduce conducted and radiated interferences.
- Ability to apply specific electronic design techniques to improve conducted and radiated immunity.
- Ability to understand and apply international Electromagnetic Compatibility (EMC) standards with special focus in European Directives.
- Ability to plan and perform conducted and radiated EMC tests.
- Ability to design electronic circuits and products taken into account their electromagnetic emission and immunity.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>26,0</td>
<td>20.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>13,0</td>
<td>10.40</td>
</tr>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Introduction to Electromagnetic Compatibility (EMC)

Description:
EMC Basics Concepts

Full-or-part-time: 8h
Laboratory classes: 2h
Self study : 6h

Radiated interferences

Description:
- Emission sources and radiating elements
- Coupling on cables and PCB
- Shielding

Full-or-part-time: 36h
Theory classes: 4h
Laboratory classes: 8h
Self study : 24h
Conducted interferences

Description:
- Filtering
- Transient suppression

Full-or-part-time: 19h
Theory classes: 2h
Laboratory classes: 4h
Self study: 13h

Transients

Description:
Burst, Surge, ESD
Protections

Full-or-part-time: 19h
Theory classes: 2h
Laboratory classes: 4h
Self study: 13h

PCB design

Description:
Layout design

Full-or-part-time: 19h
Theory classes: 2h
Laboratory classes: 4h
Self study: 13h

EMC standards

Description:
European and International Standards

Full-or-part-time: 19h
Theory classes: 2h
Laboratory classes: 4h
Self study: 13h

Numerical Simulation Techniques

Description:
FDTD

Full-or-part-time: 5h
Theory classes: 1h
Self study: 4h
ACTIVITIES

Laboratory

Description:
- EMC measurements
- EMC electronic design techniques

Related competencies:
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Full-or-part-time: 26h
Laboratory classes: 26h

SHORT ANSWER TEST (CONTROL)

Description:
Mid term control.

Full-or-part-time: 1h
Laboratory classes: 1h

EXTENDED ANSWER TEST (FINAL EXAMINATION):

Description:
Final examination with theoretical questions and short exercises.

Full-or-part-time: 2h
Theory classes: 2h

GRADING SYSTEM

Laboratory assessments: 20%
Partial examinations and controls: 30%
Final examination: 50%

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
IEE videos series (5 modules, 13 videos) 1995.