Degree competences to which the subject contributes

Transversal

1. **EFFECTIVE USE OF INFORMATION RESOURCES**: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

2. **FOREIGN LANGUAGE**: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Learning objectives of the subject

Learning objectives of the subject:

The objective of the course is to introduce several advanced control techniques and their application to the power processing control involved in renewable energy systems.

Learning results of the subject:

- Ability to describe the suitable tools leading to the dynamical models of the power processors involved in the photovoltaic and wind energy conversions to electrical power.
- Ability to analyze the control problems related with photovoltaic and wind energy conversions in different power processing scenarios (stand-alone systems, grid connected systems etc.)
- Ability to apply several nonlinear control techniques (nonlinear feedback for global linearization, energy balance techniques (passivity), variable-structure systems based techniques (sliding mode control) and fuzzy control) to solve the control problems involved in the photovoltaic and wind energy conversion systems.
- Ability to compare the features of the advanced controllers with those resulting from classical ones. This comparison will
lead to establish several criteria to the selection of the most suitable controllers.
- Ability to develop techniques for the design, analysis and evaluation of electronic systems in applications such as automation, aerospace, energy distribution and generation, consumer electronics, biomedicine, etc.
- Ability to analyze, design and evaluate electronic systems for power control and energy conversion.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. Power conversion in renewable energy systems. Control requirements.

Learning time: 9h
Theory classes: 3h
Self study: 6h

Description:
- Renewable energy sources.
- Power conversion involved in renewable energy systems

2. Nonlinear control techniques in power electronics

Learning time: 67h
Theory classes: 21h
Self study: 46h

Description:
- Dynamical behaviour of switched power conversion systems. Modelling and control problems.
- State-space dynamical models. Definitions: state variables, state-space, equilibrium points. Application to basic switched converters.
- Lyapunov stability criteria: local and global stability.
- Variable-structure systems control. ("Sliding-Mode Control")
- Fuzzy control for switched power converters.
- Passivity-based Control

3. Advanced controllers design for photovoltaic conversion systems

Learning time: 49h
Theory classes: 15h
Self study: 34h

Description:
- Power conversion scenarios: power conversion elements involved in stand-alone and grid-connected PV systems.
- Power conversion chain modelling in PV systems.
- Control goals in PV systems.
- Maximum Power Point Tracking (MPPT) of PV arrays.
- Quality factors in grid-connected PV systems. Inverters and modular systems.
- Voltage regulators, batteries, and battery chargers.
- Design of controllers:
 - Control design based on linear techniques.
 - Control design based on advanced nonlinear techniques.
Planning of activities

<table>
<thead>
<tr>
<th>EXERCISES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>- Exercises on linear control design of a battery charger from PV panels.</td>
<td></td>
</tr>
<tr>
<td>- Exercises on nonlinear control design of a battery charger from PV panels.</td>
<td></td>
</tr>
<tr>
<td>- Power management of PV grid-connected system with AC and DC loads.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORAL PRESENTATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Presentation of a work group</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

Individual assessments: from 20% to 40%
Group assessments: from 60% to 80%
Bibliography

Basic:

Complementary:

Others resources:

Course slides. Technical papers provided.