230677 - EMD - Electric Motor Drives

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2015
Degree: DEGREE IN ELECTRONIC ENGINEERING (Syllabus 1992). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Arias Pujol, Antoni
Others: JOSEP BORDONAU FARRERONS
Busquets Monge, Sergio
Pou Felix, Josep

Degree competences to which the subject contributes

Specific:
CEE1. Ability to understand and apply the principles of operation of power electronic systems in regulation, undulation and amplification applications.
CEE4. Ability to design continuous and discrete time controllers for power electronic systems.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Laboratory practical work
- Individual work (distance)
- Oral presentations
- Short answer test (Test)

Learning objectives of the subject

Learning objectives of the subject:
The aim of the course is to convey to the student a general picture of the state of the art in alternating current energy conversion technology and a fundamental understanding of the design and control of the associated power converters. Special emphasis will be given to popular applications such as renewable energy systems, electric vehicles, and industrial motor drives.

Learning results of the subject:
- Knowledge of the semiconductor devices and advanced topologies used in alternating current power converters.
- Knowledge of the typical applications of these power converters.
- Knowledge of the modulation techniques for these power converters.
- Ability to design controllers for these converters in motor drives and grid-connected applications.
- Ability to model the conversion system to run numerical simulations and evaluate the system performance.
- Ability to develop techniques for the design, analysis and evaluation of electronic systems in applications such as automation, aerospace, energy distribution and generation, consumer electronics, biomedicine, etc.
- Ability to analyze, design and evaluate electronic systems for power control and energy conversion.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. Introduction.
Learning time: 8h
Theory classes: 1h
Guided activities: 5h
Self study : 2h
Description:
Presentation of the course motivation, objectives, scope, and organization.

2. Power Semiconductor Switching Devices.
Learning time: 10h
Theory classes: 2h
Guided activities: 5h
Self study : 3h
Description:
Presentation of the different power semiconductor switching devices used in ac power converters and their characteristics.

3. Topologies.
Learning time: 8h
Theory classes: 1h
Guided activities: 5h
Self study : 2h
Description:
Synthesis of the different power converter topological structures from a general structure.

Learning time: 12h
Theory classes: 3h
Guided activities: 5h
Self study : 4h
Description:
Presentation and analysis of the main modulation techniques for single-phase dc-ac converters.
<table>
<thead>
<tr>
<th>5. Modulation Techniques for Three-Phase Dc-Ac Converters.</th>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Modeling of Three-Phase Converters.</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Control of Three-Phase Converters.</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Multilevel Converters and Applications.</th>
<th>Learning time: 19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

- Presentation and analysis of the main modulation techniques for three-phase dc-ac converters.
- Derivation of the switching, average, and linear models of systems including three-phase converters. Use of these models.
- Design of conventional controllers for systems including three-phase converters.
- Presentation of the main multilevel converter families and their applications.

Learning time: 20h
Theory classes: 4h
Laboratory classes: 6h
Guided activities: 5h
Self study: 5h

Description:
- Topologies.
- Features.
- Modulation strategies.
- Control Strategies.
- Applications.

10. Review, Discussion, and Advanced Topics.

Learning time: 11h
Theory classes: 2h
Laboratory classes: 1h
Guided activities: 5h
Self study: 3h

Description:
Review of the course contents to engage the students in a discussion with the professor about the topics covered, and presentation of the current research trends in ac energy conversion.

Qualification system

Test: 40%
Individual assessments: 30%
Laboratory assessments: 30%
Bibliography

Basic:

Complementary:

Others resources: