Course guides
230689 - WLAB - Wireless Laboratory

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).
Academic year: 2020 ECTS Credits: 5.0 Languages: English

LECTURER

Coordinating lecturer: Anna Umbert Juliana
Others: Anna Umbert, Ramon Ferrús, Ferran Casadevall, Jordi Pérez-Romero

REQUIREMENTS

Basic knowledge of wireless communications

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.
CE3. Ability to implement wired/wireless systems, in both fix and mobile communication environments.
CE2. Ability to develop radio-communication systems: antennas design, equipment and subsystems, channel modeling, link dimensioning and planning.

Transversal:
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
TEACHING METHODOLOGY

- Laboratory classes
- Laboratory practical work
- Individual work (distance)
- Extended answer test (Final Exam)

Planning of activities:

Laboratory:
- Description: Practices with commercial test equipment and software to work the different contents of LTE systems.

Exercises:
- Description: Exercises to strengthen the theoretical knowledge, before attending the laboratory, to prepare for practices.

Extended answer test (Final examination):
- Description: Final evaluation test with questions and short exercises, to check that they have reached the concepts introduced in practices.

LEARNING OBJECTIVES OF THE SUBJECT

Learning objectives of the subject:
The aim of this course is to train students in wireless technologies by using planning and optimization tools, drive-test tools, radio-testers, or wireless communications simulation platforms. At the end of the course, the student must be able to measure the most relevant parameters of radio access networks and evaluate the system performances of mobile communications systems, with especial emphasis in LTE and 5G technologies.

Learning results of the subject:
- Learn to use equipment for measuring physical layer parameters of radio communications systems including instrumentation equipment for functional analysis of terminals, and communication networks.
- Acquire a practical working knowledge of key technologies and mobile communications systems, mainly LTE (4G) and 5G technologies.
- Develop the ability to identify, analyze and solve engineering problems in the context of mobile communications systems.
- Develop the ability to perform simulations or experiments and evaluate the results by comparing theoretical and experimental results and evaluate performance of radio communications systems in controlled and/or real environments.
- Learning to use commercial tools for planning, design and performance analysis of mobile communication systems.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours small group</td>
<td>39,0</td>
<td>31.20</td>
</tr>
</tbody>
</table>

Total learning time: 125 h
CONTENTS

Course Introduction

Description:
- Presentation of the different areas
- Laboratory organisation (equipment, tools, location,?)
- Groups and schedule

Full-or-part-time: 5h
Theory classes: 3h
Self study : 2h

Area#1. Planning and optimisation of LTE and 5G networks

Description:
Create a nominal plan for an LTE access network in a given real environment
- Geographical information and its management
- Socio-economic issues (types of users, #inhabitants,...)
- Existing technical requirements (ITU, 3GPP, IEEE recommendations)
- Technical issues (power budget calculations, propagation model,...)
- Develop LTE network with ATOLL (create network, analyse coverage, analyse capacity, ...)
- Optimisation
Configure a 5G deployment with ATOLL and study the performance
Upgrade from 4G to 5G deployment

Full-or-part-time: 40h
Laboratory classes: 12h
Self study : 28h

Area#2. Drive test in LTE networks

Description:
Monitoring real LTE mobile networks with Qualipoc and analysis tools
- Introduction to monitoring tools
- Configuration parameters of 4G (LTE) systems
- Network Signalling / basic procedures
- Drive tests
- Post processing work

Full-or-part-time: 40h
Laboratory classes: 12h
Self study : 28h
Area#3. Experimental implementation and testing of LTE and 5GNR radio interfaces

Description:
- LTE Downlink Structure
- Synchronization and Signal Acquisition
- MIMO
- Link Adaptation
- Downlink/Uplink Resource Allocation
- Generation and analysis of 5G waveforms
- PDSCH throughput of a 5GNR link
- Uplink scheduling in 5G

Full-or-part-time: 40h
Laboratory classes: 12h
Self study: 28h

GRADING SYSTEM
Final examination (Short answer test): 15%
Exercises (Previous works): 15%
Laboratory assessments (Finals reports): 60%
Individual assessment (attendance, attitude,...) 10%

BIBLIOGRAPHY
Basic:

Complementary: