The so-called optimization problems rise in very different fields and applications. In all of them the function to be optimize is the so-called cost or objective function and the variables that we control to carry out the optimization are many times confined, which it is called the constraints of the problem. Convex optimization arise frequently in engineering problems but often go unrecognized. This course shows that there is a substantial and useful theory for such problems. The course will give students the tools and training to recognize convex optimization problems that arise in wireless communications and networks. The basic theory of such problems is presented together with the required background to use the methods in their own research or engineering work.
Content

Introduction

Learning time: 2h
Theory classes: 2h

Description:
Modern optimization vs classical one: Efficient solvable programmes

Convex Sets and functions

Learning time: 4h 20m
Theory classes: 4h 20m

Description:
Definitions and properties

Convex programming and class of convex problems

Learning time: 8h 40m
Theory classes: 4h 20m
Practical classes: 4h 20m

Description:
Formulation of a convex optimization problem
Study of: LP, QP, SOCP, SDP, GP
Problem relaxation
Applications: norm minimization, filter design, low rank optimization problems (eg. Netflix, video security, image restoration)
Convex software tool programming

Duality

Learning time: 6h
Theory classes: 4h
Practical classes: 2h

Description:
Lagrange Duality and KKT conditions
Primal-Dual decomposition
Applications: Radio resource management for satellite and wireless comm (power control, waterfilling, MIMO transceiver design), cloud computing
230695 - ACO - Applied Convex Optimization

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
</tbody>
</table>

Description:
- Basic algorithms: interior point method
- Simple methods for extremely large problems
- Applications: compressed sensing, ML decoding and SDP relaxation, 5G beamforming

<table>
<thead>
<tr>
<th>Multi-Objective optimization</th>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
</tbody>
</table>

Description:
- Theory
- Applications: interference networks, portfolio optimization, SVM and classification

Qualification system

- Individual assessment 60%
- Group assessment 40%

Bibliography

Basic:

Others resources:
- Class notes and problems