Course guide
230696 - MLAB - Matlab: Fundamentals And/Or Applications

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.
Degree: MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Optional subject).
MASTER’S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).
MASTER’S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).
MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2022). (Optional subject).

Academic year: 2022 ECTS Credits: 5.0 Languages: English

LECTURER
Coordinating lecturer: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura

Others: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

PRIOR SKILLS
Linear Algebra, Signal Processing

REQUIREMENTS
No requisit

TEACHING METHODOLOGY
Lecture notes and collection of exercises are available in pdf in the virtual campus. We use a forum for questions and answers in the virtual campus. Solutions of the proposed exercises are also available. In the first part of the course the student solves a set of proposed exercises for training. In the second part of the course the student develops and presents a final work.

LEARNING OBJECTIVES OF THE SUBJECT
Part I. Fundamentals.
The objectives are:
1. Present MATLAB and SIMULINK.
2. To get the basic knowledge necessary to work with both packages with complete autonomy.
Part II. Applications.
The objectives are:
1. To get more insight into MATLAB and SIMULINK, while presenting and developing more advanced applications,...
2. Each student will work in a subject of their own interest.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>86.0</td>
<td>68.80</td>
</tr>
<tr>
<td>Hours small group</td>
<td>13.0</td>
<td>10.40</td>
</tr>
<tr>
<td>Hours large group</td>
<td>26.0</td>
<td>20.80</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

ENG Unit 1. Matlab Fundamentals

- **Description:** Matlab fundamentals
- **Specific objectives:** Introduction to the software
- **Related activities:** Exercises 1
- **Full-or-part-time:** 11h 40m
 - Guided activities: 3h 20m
 - Self study: 8h 20m

ENG Unit 2. Matlab Graphics

- **Description:** Using Matlab Graphics
- **Related activities:** Exercises 2
- **Full-or-part-time:** 11h 40m
 - Guided activities: 3h 20m
 - Self study: 8h 20m

ENG Unit 3. M-file Programming

- **Description:** M-file programming
- **Specific objectives:** Learn how to produce scripts and functions
- **Related activities:** Exercises 3
- **Full-or-part-time:** 11h 40m
 - Guided activities: 3h 20m
 - Self study: 8h 20m
(ENG) Unit 4. Graphics User Interface

Description:
Using GUIs

Specific objectives:
Generate GUIs with Matlab

Related activities:
Exercises 4

Full-or-part-time: 11h 40m
Guided activities: 3h 20m
Self study : 8h 20m

(ENG) Unit 5. Simulink

Description:
Introducing Simulink and Stateflow

Specific objectives:
To simulate systems with Simulink

Related activities:
Exercises 5

Full-or-part-time: 11h 40m
Guided activities: 3h 20m
Self study : 8h 20m

(ENG) Unit 6. Hand-on projects with ARDUINO, RASPBERRY PI, FPGAs

Description:
Laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Specific objectives:
Learn the basics of programming with SIMULINK / MATLAB and Hardware-in-the-loop

Related activities:
Practices in the Laboratory of the Subject using ARDUINO, RASPBERRY and/or FPGAs

Full-or-part-time: 10h
Practical classes: 4h
Laboratory classes: 6h

(ENG) Unit 7. Advanced projects with ARDUINO, RASPBERRY PI, FPGAs

Description:
Development of your own laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Full-or-part-time: 14h
Laboratory classes: 6h
Self study : 8h
ACTIVITIES

Guided Laboratory Practices on examples of projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Description:
Laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Specific objectives:
Learn the basics of Hardware programming with SIMULINK and / or MATLAB

Material:
ARDUINO, RASPBERRY and FPGAs

Delivery:
Practice Report

Full-or-part-time: 10h
Practical classes: 4h
Laboratory classes: 6h

Develop of a Final Work

Description:
Development of your own laboratory projects based on SIMULINK and/or MATLAB with ARDUINO, RASPBERRY and FPGAs

Delivery:
Final Work Report
Video of performance

Full-or-part-time: 14h
Laboratory classes: 6h
Self study: 8h

GRADING SYSTEM

Exercises: 30%
Final work: 70%

EXAMINATION RULES.

Final work consists of
(1) A document containing:
 (1.1) A brief theoretical introduction about the chosen subject (this can be any related to your thesis, your job, or other interests), and
 (1.2) two solved exercises about the chosen subject as well as their solution steps and MATLAB code.
(2) The set of MATLAB files (*.m, *.mdl, ...) that solve the two proposed exercises.
(Several final works from previous courses will be available in the virtual campus in order to show the required extension and difficulty)

BIBLIOGRAPHY

Basic:
- Mathworks. Matlab toolboxes. Mathworks,