Degree competences to which the subject contributes

Specific:
- CE4. Ability to design and dimension transport, broadcast and distribution networks for multimedia signals.
- CE3. Ability to implement wired/wireless systems, in both fixed and mobile communication environments.
- CE6. Ability to model, design, implement, manage, operate, administrate and maintain networks, services and contents.
- CE8. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services.
- CE7. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process.

Transversal:
- CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
- CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
- CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

Learning objectives of the subject

The aim of this course is to give insight of modern techniques used in broadband optical communications networks. Main
concepts about key devices involved, traffic engineering, control and management of optical networks, as well as resiliency, will be given considering both, backbone and access networks.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td>39h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td>31.20%</td>
<td>68.80%</td>
</tr>
<tr>
<td>Content</td>
<td>Learning time:</td>
<td>Description:</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Introduction: Optical networks evolution</td>
<td>11h</td>
<td>Fiber optic communications as well as Optical networks evolution</td>
</tr>
<tr>
<td>Optical Network Enabling technologies</td>
<td>14h</td>
<td>Basic WDM devices review (splitters, filters, switches, WSS) ROADM and OXC</td>
</tr>
<tr>
<td>Traffic Engineering Basics</td>
<td>15h</td>
<td>Routing and wavelength assignment Network performance metrics Resiliency in optical networks</td>
</tr>
</tbody>
</table>
230698 - OPNET - Optical Networks

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time:</th>
<th>Description</th>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control and Management of Optical Networks</td>
<td>13h</td>
<td>ASON fundamentals. GMPLS controlled networks.</td>
<td>Main characteristics of optical networks management.</td>
</tr>
<tr>
<td>Metro and Access Optical Networks</td>
<td>15h</td>
<td>Passive optical networks</td>
<td>Access networks characteristics.</td>
</tr>
<tr>
<td>Packet Switched Optical Networks</td>
<td>11h</td>
<td>Optical Packet and Burst Switching Technologies</td>
<td>Understanding OPS characteristics and technological requirements</td>
</tr>
<tr>
<td>Energy efficiency in Optical networks</td>
<td>11h</td>
<td>Networks energy consumption. Green optical networks</td>
<td></td>
</tr>
</tbody>
</table>
230698 - OPNET - Optical Networks

Elastic/ flexgrid optical networks

Description:
Elastic network characteristics and Performance evaluation

Learning time: 13h
- Theory classes: 5h
- Self study: 8h

Software Defined Networks (SDN)

Description:
Software defined networks principles. Optical Network Virtualization

Learning time: 11h
- Theory classes: 3h
- Self study: 8h

Optical Networks and data centres

Description:
Cloud computing and traffic evolution. Optics in the data center

Learning time: 12h
- Theory classes: 4h
- Self study: 8h

Qualification system

Lectures attendance (10%), Workgroup assignments (20%), Individual work (30%), Exam (40%)

Bibliography

Complementary: