230705 - OSEN - Optical Fiber Sensor Technologies

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019).
(Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Junyent Giralt, Gabriel
Others: Junyent Giralt, Gabriel
Comellas Colomé, Jaume

Opening hours
Timetable: Any time is possible by appointment email.

Degree competences to which the subject contributes

Specific:
CE11. Knowledge of hardware description languages for high-complex circuits.

CE3. Ability to implement wired/wireless systems, in both fix and mobile communication environments.

CE15. Ability to integrate Telecommunication Engineering technologies and systems, as a generalist, and in broader and multidisciplinary contexts, such as bioengineering, photovoltaic conversion, nanotechnology and telemedicine.

CE6. Ability to model, design, implement, manage, operate, administrate and maintain networks, services and contents

CE13. Ability to apply advanced knowledge in photonics, optoelectronics and high-frequency electronic

CE14. Ability to develop electronic instrumentation, as well as transducers, actuators and sensors.

Transversal:
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
The objective of this course is to train students in the methods of studying, analyzing, designing and evaluating the technologies-applications of optical sensors implemented with optical fibers. First, we consider the evolution of optical sensors in general, the importance of fiber optic sensors, their main technologies, and key devices, components and subsystems that allow the implementation of fiber sensor systems. A first chapter is the one dedicated to the analysis and design of the OTDR subsystem that will allow to know the exact distance in the fiber optic segment where the distributed fiber sensors perform the measure (temperature, vibration, etc.). Then the main distributed optical fiber sensors (Rayleigh, Raman and Brillouin) will be analyzed. Because fiber optics can behave like a distributed sensor, the practical application of such sensors is now very relevant for sensing applications in tens of kilometers with a single interrogator at one end. For measurements at discrete points, fiber sensors with Bragg Grating (FBG) are the most widely used for their simplicity and performance. Finally, the industrial applications of these sensors will be analyzed, commenting on the applications of the low-cost sensors based on plastic fibers, and the applications of the optical sensors for the technology and the development of Smart-Cities.

Learning results of the subject:
- Ability to analyze, specify, design optical sensors (and sensor networks) implemented with optical fiber: distributed, non-distributed, quasi-distributed and discrete.
- Ability to develop solutions and applications for different types of fiber sensors: temperature, voltage-deformation, vibration, acoustic, etc.
- Ability to analyze and design the interrogation systems for different types and applications of sensors.
- Ability to analyze and design a key subsystem: Optical Time Domain Reflectometer (OTDR)
- Ability to analyze the importance of optical sensors for the development of technologies related to “Smart Cities” and Energy Efficiency.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

I. Introduction

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1. - Optical sensors: A historical perspective</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>I.2. - Fiber-Optic Sensors: Fundamentals and Applications</td>
<td>Self study : 6h</td>
</tr>
<tr>
<td>I.3. - Optical fibre technology:</td>
<td></td>
</tr>
<tr>
<td>Fiber optics</td>
<td></td>
</tr>
<tr>
<td>Components, Devices and Subsystems</td>
<td></td>
</tr>
<tr>
<td>I.4. - Types of optical fiber sensors:</td>
<td></td>
</tr>
<tr>
<td>Quasi-distributed sensing networks</td>
<td></td>
</tr>
<tr>
<td>Distributed fiber optic sensing</td>
<td></td>
</tr>
<tr>
<td>Fiber Bragg Grating sensors</td>
<td></td>
</tr>
<tr>
<td>Interferometric sensing</td>
<td></td>
</tr>
</tbody>
</table>

II. Optical Time Domain Reflectometry (OTDR)

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 19h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1. - OTDR: Applications for Distributed Optical Fiber Sensors</td>
<td>Theory classes: 8h 30m</td>
</tr>
<tr>
<td>II.2. - OTDR: Operating Principles</td>
<td>Self study : 11h</td>
</tr>
<tr>
<td>II.3. - OTDR: Limitations</td>
<td></td>
</tr>
<tr>
<td>II.4. - OTDR: Alternatives for High-Performance Long-Haul</td>
<td></td>
</tr>
<tr>
<td>II.5. - OTDR: Signal Averaging</td>
<td></td>
</tr>
<tr>
<td>II.6. - OTDR: Correlation Techniques</td>
<td></td>
</tr>
<tr>
<td>II.7. - OTDR: Complementary Codes</td>
<td></td>
</tr>
<tr>
<td>II.8. - OTDR: Correlation Gain</td>
<td></td>
</tr>
<tr>
<td>II.9. - Phase-OTDR</td>
<td></td>
</tr>
<tr>
<td>II.10. - OTDR: Appendix</td>
<td></td>
</tr>
<tr>
<td>II.11. - OTDR: References</td>
<td></td>
</tr>
</tbody>
</table>
III. Raman-Distributed Temperature Sensors (Raman-DTS)

Learning time:
- Theory classes: 6h 30m
- Self study: 7h 30m

Description:
- III.1. - Raman-DTS
- III.2. - Raman scattering
- III.3. - Raman-DTS: Temperature measurements
- III.4. - Raman-DTS System
- III.5. - Raman-DTS Performances
- III.6. - Raman-DTS with Loop Configuration
- III.7. - Raman-DTS: Long-Range (LR) with Hybrid Configuration
- III.8. - Raman-DTS: LR with Coded-OTDR and Discrete Raman Amplification
- III.9. - Raman-DTS: Anti-Stokes Raman with Rayleigh Loss Correction
- III.10. - Raman-DTS: Dual Sources separated by two Stokes Shifts
- III.11. - Raman-DTS: Applications
- III.12. - Raman-DTS: References

IV. Brillouin-Distributed Fiber Sensors (Brillouin-DFS)

Learning time:
- Theory classes: 6h
- Self study: 7h

Description:
- IV.1. - Brillouin Scattering
- IV.2. - Brillouin-DFS
- IV.3. - Brillouin-DFS: Interrogation Techniques
- IV.4. - Brillouin-DFS System Performances
- IV.5. - Brillouin-DFS: Applications
- IV.6. - Brillouin-DFS: References
V. Fiber Bragg Grating (FBG) Sensors

Description:
- V.1- Bragg Gratings in Optical Fibers
- V.2- Fiber Bragg Gratings: Temperature and Strain Sensors
- V.3- FBG Interrogator System
- V.4- High Capacity FBG-WDM Sensing System
- FBGs in multicore fiber for curvature sensing
- V.5- FBG Sensors with High Birefringent Optical Fibers
- V.6- FBG Sensors: Benefits and Applications
- V.7- Appendix: Strain definitions
- V.8- FBG Sensors References

Learning time: 22h
- Theory classes: 9h
- Self study: 13h

VI. Distributed Acoustic Sensing (DAS)

Description:
- VI.1- DAS: Introduction
- VI.2- DAS: Interrogation Techniques
- VI.3- DAS: Signal Processing
- VI.4- DAS: Applications
- VI.5- DAS: References

Learning time: 12h 40m
- Theory classes: 7h
- Self study: 5h 40m

VII. Applications of Fiber Optic Sensors

Description:
- VII.1.- Applications of Distributed Temperature Sensors (DTS)
- VII.2.- Distributed Strain Sensors (DSS): practical issues, solutions and applications
- VII.3.- Applications of Distributed Acoustic Sensors (DAS)
- VII.4.- Applications of Distributed Vibration Sensors (DVS)
- VII.5.- Applications of Fiber Bragg Grating Sensors (FBG-Sensors)
- VII.6.- Applications of Plastic Fiber-Optic Sensors (PFOS)
- VII.7.- Applications to IoT and Smart Cities
- VII.8.- Applications of New Optical Fibers (SDM and FMF) to sensing technologies

Learning time: 9h
- Theory classes: 5h
- Self study: 4h
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNICAL REPORT</td>
<td>29h</td>
<td>Description: Technical Report: This activity involves the preparation of a Technical Work, in groups of 2 or 3 students, which must be delivered in PowerPoint format and presented to the class at the end of the course. Oral Presentation: Oral presentation of Technical Report (30 minutes) Final exam (90 minutes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support materials: For this course ATENEA will be the virtual teaching support tool. From there the students will be able to download all the documents (slides, related papers, etc.) related to the course.</td>
</tr>
<tr>
<td>ORAL PRESENTATION</td>
<td>0h 45m</td>
<td>Description: Technical Report Presentation of a work group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support materials: Power point presentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specific objectives: To evaluate the ability to present oral in group and individually results of the technical report</td>
</tr>
<tr>
<td>FINAL EXAM</td>
<td>1h 30m</td>
<td>Description: Final Exam</td>
</tr>
</tbody>
</table>

| Qualification system | | Final examination: 40% Individual assessment: 10% Technical Report (group technical work): 50% |

| Regulations for carrying out activities | | On the final exam students will be able to bring all kinds of technical information (slides, books, related papers of the course, etc.) |
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

Nom recurs

For this course ATENEA will be the virtual teaching support tool. From there the students will be able to download all the documents (slides, related papers, etc.) of the course.