Degree competences to which the subject contributes

At the end of this course students will be able to design, implement, train and evaluate a machine learning system based on deep neural networks.

Prior skills

A previous knowledge on basic machine learning is advisable. In terms of programming, it is recommended that students are familiar with Python programming language beforehand.

Teaching methodology

Lectures, in class labs and assignments.

Learning objectives of the subject

At the end of this course students will be able to design, implement, train and evaluate a machine learning system based on deep neural networks.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
1. DEEP NEURAL NETWORKS

Description:
1.1 The Perceptron. Regression vs classification. The Softmax classifier.
1.2 Multi-layer perceptron (MLP).
1.3 Basic layers: Fully connected. Convolutions/Deconvolutions, Non-linearities (ReLU, tanh, sigmoid).
1.4 Interpretability: t-SNE, visualizations, highest activations.

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

2. TRAINING

Description:
2.1 Backpropagation
2.2 Optimizers
2.3 Loss functions
2.4 Methodology
2.5 Efficient computation

Learning time: 35h 59m
Theory classes: 7h 53m
Self study: 28h 06m

3. MEMORY NETWORKS

Description:
3.1 Recurrent Neural Networks
3.2 Gated models: LSTM, GRU, ...
3.3 Advanced models: QRNN, pLSTM, ...

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m
4. BEYOND SUPERVISED LEARNING

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Unsupervised and semi-supervised learning.</td>
</tr>
<tr>
<td>4.2 Adversarial training and generative models</td>
</tr>
<tr>
<td>4.3 Incremental learning</td>
</tr>
<tr>
<td>4.4 Active learning</td>
</tr>
<tr>
<td>4.5 Reinforcement learning</td>
</tr>
<tr>
<td>4.6 Meta-learning</td>
</tr>
</tbody>
</table>

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

5. COMPUTATION

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Software stack</td>
</tr>
<tr>
<td>5.2 Computational requirements</td>
</tr>
<tr>
<td>5.3 Scalability</td>
</tr>
</tbody>
</table>

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m
Planning of activities

Lectures

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DEEP NEURAL NETWORKS</td>
</tr>
<tr>
<td>2. TRAINING</td>
</tr>
<tr>
<td>3. MEMORY NETWORKS</td>
</tr>
<tr>
<td>4. BEYOND SUPERVISED LEARNING</td>
</tr>
<tr>
<td>5. COMPUTATION</td>
</tr>
</tbody>
</table>

Hours: 108h
Theory classes: 23h 40m
Self study: 84h 20m

Labs in class

Description:
1. Classification vs Regression
3. Data pipelines between CPUs and GPUs.
5. Generative adversarial networks.

Support materials:
Deep learning frameworks used during the labs: Caffe, Tensorflow and Keras.

Hours: 10h
Laboratory classes: 5h
Self study: 5h

Project

Description:
Hands on project where students must design, train and test their own deep learning model.

Support materials:
GPUs on a cloud service.

Descriptions of the assignments due and their relation to the assessment:
Oral presentation
Poster

Hours: 40h
Theory classes: 1h
Laboratory classes: 8h
Self study: 31h

Grading

Hours: 4h
Theory classes: 4h
Description:
Written exams in class.

Qualification system
Labs: 15%
Midterm: 15%
Project: 40%
Final exam: 30%

Bibliography

Others resources:

Hyperlink
https://telecombcn-dl.github.io/2017-dlcv/
Deep Learning for Computer Vision Summer School at UPC ETSETB TelecomBCN 2017

https://telecombcn-dl.github.io/2017-dlai/
Web page of the course

Audiovisual material
https://telecombcn-dl.github.io/2017-dlsl/
Resource