Degree competences to which the subject contributes

Specific:
CE1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Teaching methodology
Lectures, in class labs and assignments.

Learning objectives of the subject
At the end of this course students will be able to design, implement, train and evaluate a machine learning system based on deep neural networks.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Self study: 86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
230706 - DLAI - Deep Learning for Artificial Intelligence

Content

<table>
<thead>
<tr>
<th>1. DEEP NEURAL NETWORKS</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h 57m</td>
</tr>
<tr>
<td></td>
<td>Self study: 14h 03m</td>
</tr>
</tbody>
</table>

Description:
1.1 The Perceptron. Regression vs classification. The Softmax classifier.
1.2 Multi-layer perceptron (MLP).
1.4 Interpretability: t-SNE, visualizations, highest activations.

<table>
<thead>
<tr>
<th>2. TRAINING</th>
<th>Learning time: 35h 59m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 7h 53m</td>
</tr>
<tr>
<td></td>
<td>Self study: 28h 06m</td>
</tr>
</tbody>
</table>

Description:
2.1 Backpropagation
2.2 Optimizers
2.3 Loss functions
2.4 Methodology
2.5 Efficient computation

<table>
<thead>
<tr>
<th>3. MEMORY NETWORKS</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h 57m</td>
</tr>
<tr>
<td></td>
<td>Self study: 14h 03m</td>
</tr>
</tbody>
</table>

Description:
3.1 Recurrent Neural Networks
3.2 Gated models: LSTM, GRU, ...
3.3 Advanced models: QRNN, pLSTM, ...
4. BEYOND SUPERVISED LEARNING

Description:
- 4.1 Unsupervised and semi-supervised learning.
- 4.2 Adversarial training and generative models
- 4.3 Incremental learning
- 4.4 Active learning
- 4.5 Reinforcement learning
- 4.6 Meta-learning

Learning time: 18h
- Theory classes: 3h 57m
- Self study: 14h 03m

5. COMPUTATION

Description:
- 5.1 Software stack
- 5.2 Computational requirements
- 5.3 Scalability

Learning time: 18h
- Theory classes: 3h 57m
- Self study: 14h 03m
Planning of activities

Lectures

Description:
1. DEEP NEURAL NETWORKS
2. TRAINING
3. MEMORY NETWORKS
4. BEYOND SUPERVISED LEARNING
5. COMPUTATION

Hours: 108h
- Theory classes: 23h 40m
- Self study: 84h 20m

Labs in class

Description:
1. Classification vs Regression
3. Data pipelines between CPUs and GPUs.
5. Generative adversarial networks.

Support materials:
Deep learning frameworks used during the labs: Caffe, Tensorflow and Keras.

Hours: 10h
- Laboratory classes: 5h
- Self study: 5h

Project

Description:
Hands on project where students must design, train and test their own deep learning model.

Support materials:
GPUs on a cloud service.

Descriptions of the assignments due and their relation to the assessment:
- Oral presentation
- Poster

Hours: 40h
- Theory classes: 1h
- Laboratory classes: 8h
- Self study: 31h

Grading

Hours: 4h
- Theory classes: 4h
230706 - DLAI - Deep Learning for Artificial Intelligence

Description:
Written exams in class.

Qualification system
Labs: 15%
Midterm: 15%
Project: 40%
Final exam: 30%

Bibliography

Basic:

Others resources:

- [Hyperlink](https://telecombcn-dl.github.io/2017-dlcv/)
 Deep Learning for Computer Vision Summer School at UPC ETSETB TelecomBCN 2017

- [Hyperlink](https://telecombcn-dl.github.io/2017-dlaic)
 Web page of the course

- [Audiovisual material](https://telecombcn-dl.github.io/2017-dsl/)
 Resource