230706 - DLAI - Deep Learning for Artificial Intelligence

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5 Teaching languages: English

Teaching staff
Coordinator: Giró Nieto, Xavier
Others: Ruiz Hidalgo, Javier
Ruiz Costa-Jussà, Marta
Sayrol Clols, Elisa
Vilaplana Besler, Veronica
Morros Rubio, Josep Ramon
Casamitjana Díaz, Adrià

Prior skills
A previous knowledge on basic machine learning is advisable. In terms of programming, it is recommended that students are familiar with Python programming language beforehand.

Degree competences to which the subject contributes
Specific:
CE1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Teaching methodology
Lectures, in class labs and assignments.

Learning objectives of the subject
At the end of this course students will be able to design, implement, train and evaluate a machine learning system based on deep neural networks.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Self study: 86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. DEEP NEURAL NETWORKS

Description:
- 1.1 The Perceptron. Regression vs classification. The Softmax classifier.
- 1.2 Multi-layer perceptron (MLP).
- 1.4 Interpretability: t-SNE, visualizations, highest activations.

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

2. TRAINING

Description:
- 2.1 Backpropagation
- 2.2 Optimizers
- 2.3 Loss functions
- 2.4 Methodology
- 2.5 Efficient computation

Learning time: 35h 59m
Theory classes: 7h 53m
Self study: 28h 06m

3. MEMORY NETWORKS

Description:
- 3.1 Recurrent Neural Networks
- 3.2 Gated models: LSTM, GRU, ...
- 3.3 Advanced models: QRNN, pLSTM, ...

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m
4. BEYOND SUPERVISED LEARNING

Description:
- 4.1 Unsupervised and semi-supervised learning.
- 4.2 Adversarial training and generative models
- 4.3 Incremental learning
- 4.4 Active learning
- 4.5 Reinforcement learning
- 4.6 Meta-learning

Learning time: 18h
- Theory classes: 3h 57m
- Self study: 14h 03m

5. COMPUTATION

Description:
- 5.1 Software stack
- 5.2 Computational requirements
- 5.3 Scalability

Learning time: 18h
- Theory classes: 3h 57m
- Self study: 14h 03m
Planning of activities

Lectures

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 108h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DEEP NEURAL NETWORKS</td>
<td>Theory classes: 23h 40m</td>
</tr>
<tr>
<td>2. TRAINING</td>
<td>Self study: 84h 20m</td>
</tr>
<tr>
<td>3. MEMORY NETWORKS</td>
<td></td>
</tr>
<tr>
<td>4. BEYOND SUPERVISED LEARNING</td>
<td></td>
</tr>
<tr>
<td>5. COMPUTATION</td>
<td></td>
</tr>
</tbody>
</table>

Labs in class

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Classification vs Regression</td>
<td>Laboratory classes: 5h</td>
</tr>
<tr>
<td>2. Convolutional neural networks for image classification.</td>
<td>Self study: 5h</td>
</tr>
<tr>
<td>3. Data pipelines between CPUs and GPUs.</td>
<td></td>
</tr>
<tr>
<td>5. Generative adversarial networks.</td>
<td></td>
</tr>
</tbody>
</table>

Support materials:
Deep learning frameworks used during the labs: Caffe, Tensorflow and Keras.

Project

<table>
<thead>
<tr>
<th>Description:</th>
<th>Hours: 40h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hands on project where students must design, train and test their own deep learning model.</td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 8h</td>
</tr>
<tr>
<td></td>
<td>Self study: 31h</td>
</tr>
</tbody>
</table>

Support materials:
GPUs on a cloud service.

Descriptions of the assignments due and their relation to the assessment:
Oral presentation
Poster

Grading

| Hours: 4h |
| Theory classes: 4h |
Description:
Written exams in class.

Qualification system

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm</td>
<td>15%</td>
</tr>
<tr>
<td>Project</td>
<td>40%</td>
</tr>
<tr>
<td>Final exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

Bibliography

Basic:

Others resources:

Hyperlink

https://telecombcn-dl.github.io/2017-dlcv/
Deep Learning for Computer Vision Summer School at UPC ETSETB TelecomBCN 2017

https://telecombcn-dl.github.io/2017-dlai/
Web page of the course

Audiovisual material

https://telecombcn-dl.github.io/2017-dsl/
Resource