Can a machine learn to correct the grammaticality of text? Can a machine learn to answer questions we make in plain English? Can a machine learn to translate languages, using Wikipedia as a training set?

This course offers an in depth coverage of methods for Natural Language Processing. We will present fundamental models and tools to approach a variety of Natural Language Processing tasks, ranging from syntactic processing, to
semantic processing, to final applications such as information extraction, human-machine dialogue systems, and machine translation. The flow of the course is along two main axis: (1) computational formalisms to describe natural language processes, and (2) statistical and machine learning methods to acquire linguistic models from large data collections.

1. Learn to apply statistical methods for NLP in a practical application
2. Understand statistical and machine learning techniques applied to NLP
3. Develop the ability to solve technical problems related to statistical and algorithmic problems in NLP
4. Understand fundamental methods of Natural Language Processing from a computational perspective

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours small group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td>26h</td>
<td>13h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td>20.80%</td>
<td>10.40%</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
230717 - AHLT - Advanced Human Language Technologies

Content

<table>
<thead>
<tr>
<th>Advanced Human Language Technology</th>
<th>Learning time: 2h 05m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 0h 26m</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 0h 13m</td>
</tr>
<tr>
<td></td>
<td>Self study: 1h 26m</td>
</tr>
</tbody>
</table>

Description:

1. **Course Introduction (1h Theory)**
2. **Syntactic Parsing (5h Theory)**

 Three lectures of the course will be devoted to syntactic parsing:

 1.- Statistical parsing. The core are SCFG. Learning (supervised from treebanks or unsupervised using the inside/outside algorithm), parsing (Viterbi). Pros & Cons of SCFG. Other probabilistic approaches.

3. **Distances and Similarities (3h Theory)**

4. **Semantic Role Labelling (2h Theory)**
5. **Semantic Parsing (6h Theory)**

6. **Distributional models (2h Theory)**

7. **Linguistic Inference (2h Theory)**

 Detecting inference between linguistic units. Recognizing Textual Entailment. The case of paraphrasing.

8. **Deep Learning for NLP (6h Theory)**

 Three lectures will be devoted to Deep Learning for NLP:

 1.- Linear models. Feed Forward NN. Simple Perceptron. Multilayer Perceptron (MLP).

2.- Neural language modeling and Word embeddings. Use of words embeddings

9. **Laboratory Assignment (13h)**
Qualification system

Final grade = 0.5*FE + 0.5*LP

where

FE is the grade of the final exam

LP is the grade of the lab project

Bibliography

Basic:

