230720 - INMAN - Optimization and Artificial Intelligence Techniques in Network Management

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff

Coordinator: Serrat Fernandez, Juan
Others: Serrat Fernandez, Juan
Gorricho Moreno, Juan Luis

Teaching methodology

- Descriptive classes
- Lectures by the students to show applications of acquired knowledge
- Individual work consisting in the search and analysis of bibliography (remote)
- Individual work intended as a means of learning (remote)
- Use of software tools
- Exercises assigned by teachers (remote)

Learning objectives of the subject

- Understand the nature of problems that solve the management and control of networks and services
- Understand and know how to use the most common optimization techniques in the field of telecommunication networks
- Understand and know how to use the most common techniques of statistical inference
- Understand and know how to use reinforcement learning techniques to solve network management problems

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to network control and management</td>
<td>20h 48m</td>
<td>This topic will introduce the management and control of existing telecommunication networks and services. Once the work scenario of the subject has been identified from a global perspective, an introduction will be made to the problems that are commonly presented and how the so-called artificial intelligence techniques can be applied to solve them. Finally, the three major techniques studied in the subject: optimization, statistical inference and reinforcement learning will be presented.</td>
</tr>
<tr>
<td>2. Network optimization problems</td>
<td>41h 36m</td>
<td>In this topic we will study different mathematical tools used to solve optimization problems in telecommunication networks. By optimizing, understood as the efficient use of network resources, we will identify different mathematical models for the use of these networks, among others, the models based on problems of constraint satisfaction, linear programming or combinatorial optimization. The type problems that are most often given in optimization will be identified and numerical exercises will be performed applying the techniques explained in this topic.</td>
</tr>
<tr>
<td>3. Probabilistic diagnosis and inference of network behaviours</td>
<td>20h 48m</td>
<td>In this topic, the behavior of telecommunication networks is studied from a statistical point of view. Starting from a system of statistical sampling of certain network operation parameters, the corresponding probabilistic model will be generated with a set of random variables. The dependence relations between these random variables will be studied to later model the overall behavior of the system through a Bayesian Network. From this Bayesian Network we will study how statistical inferences can be made, such as: the diagnosis of the operation of the network or the forecast of the future behavior of the network when the conditions of operation of the network change.</td>
</tr>
</tbody>
</table>
There will be two partial exams, one around midterm (C1) and the other at the end (C2). The scope of each exam will be determined later but likely will be half of the matter each. On the other hand the individual homework (TI) will be also evaluated. The grade of continuous evaluation will be $0.7 \frac{(C1+C2)}{2} + 0.3 \times TI$. If this grade is greater or equal to five the matter will be passed and it won't be necessary the final exam. Otherwise it will be necessary to pass a final exam of the whole program.

Bibliography

Basic: