230726 - CVDL - Computer Vision with Deep Learning

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: JOSEP RAMON MORROS
Others: JAVIER RUIZ, VERÓNICA VILAPLANA

Prior skills
Important: You should have the following previous knowledge to follow the course:
- Image processing: pixels, color spaces, histograms, frequency domain representation
- Digital signal processing: linear filters, convolution
- Vector and matrix algebra
Notions of python are useful, but these are easily obtained during the course.

Degree competences to which the subject contributes

Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.
2. Ability to integrate Telecommunication Engineering technologies and systems, as a generalist, and in broader and multidisciplinary contexts, such as bioengineering, photovoltaic conversion, nanotechnology and telemedicine.

Transversal:
3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Practical work
- Individual work (distance)
- Exercises
- Mid and final term exams

Learning objectives of the subject
Learning objectives of the subject:

The aim of this course is to provide an overview of concepts and applications of computer vision, with both classic and Deep Learning methods. We will introduce low level techniques such as feature extraction and matching, edge detection, cameras and projection models and optical flow; mid-level topics such as video segmentation and feature tracking; high level methods such as object tracking. Then, examples of application will be shown, such as face and object recognition.

Learning results of the subject:

- Ability to understand and use techniques for image and video analysis: feature extraction, video segmentation, stereo, object detection.
- Ability to use computer vision algorithms to implement high-level applications.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>39h</td>
<td>31.20%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. Introduction

Learning time: 7h
Theory classes: 3h
Self study: 4h

Description:
- Motivation, types of problems in CV
- Image formation, perception, 3D sensors

2. Image Structure

Learning time: 29h
Theory classes: 9h
Guided activities: 4h
Self study: 16h

Description:
- Color, texture, filtering, and contours
- Detection and representation of interesting points and 'blobs'
- Modeling: RANSAC, Hough transform
- Saliency maps

3. Stereo and 3D applications

Learning time: 30h
Theory classes: 9h
Guided activities: 4h
Self study: 17h

Description:
- Single-camera geometry, camera calibration
- Epipolar geometry, homography
- Camera pose estimation and sensor registration using deep learning
4. Video tracking

Learning time: 29h
Theory classes: 9h
Guided activities: 4h
Self study: 16h

Description:
- Optical flow: Lucas-Kanade, Shi-Tomasi, Deep Learning methods
- Bayesian tracking: Kalman, Particle filters
- Deep Learning tracking methods

5. Detection and recognition

Learning time: 30h
Theory classes: 9h
Guided activities: 4h
Self study: 17h

Description:
- Image classification: Bag of words model. Image classification using CNNs
- Object detection: Sliding windows and local features. Object detection using CNNs
- Object segmentation: Semantic segmentation. Instance segmentation
Planning of activities

<table>
<thead>
<tr>
<th>LABORATORY</th>
<th>Hours: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:
- Detecting contours and modeling shapes: Canny, Hough, Ransac, DL
- Finding correspondences between images: Harris, SIFT
- Fundamental matrix estimation
- Application of homography: panorama creation
- Face detection & recognition

<table>
<thead>
<tr>
<th>EXERCISES</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
</tbody>
</table>

Description:
Exercises to strengthen the theoretical knowledge.

<table>
<thead>
<tr>
<th>EXTENDED ANSWER TEST</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
</tbody>
</table>

Description:
Mid-term examination.

<table>
<thead>
<tr>
<th>EXTENDED ANSWER TEST</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
</tbody>
</table>

Description:
Second term examination

Qualification system

First-term examination: 40%
Second term examination: 40%
Laboratory/Exercises assessments: 20%
Bibliography

Basic:

Complementary:

