230852 - SEM - Surface Engineering and Microdevices

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2018
ECTS credits: 5
Teaching languages: English

Teaching staff

Coordinator: Pradell Cara, Lluis
Others: Llorca Pique, Jordi
Casals Terre, Jasmina
Pradell Cara, Lluis

Prior skills

- Electromagnetic wave propagation. Guided waves. Transmission lines (input impedance, reflection coefficient, voltage standing-wave ratio, transmitted power, Smith chart). Impedance matching

Requirements

- Course on Electromagnetic Waves

Teaching methodology

MD1 - Master classes
MD5 - Individual assignments (written document)
MD7 - Practical exercises both theoretical resolution and using software tools (circuit/electromagnetic and electromechanical)
MD10 - Laboratory practice performed by teams

Learning objectives of the subject

- To know the structure of the surfaces and the main characterization techniques
- To understand the physical and chemical phenomena that take place on the surfaces of solid materials and their applications
- To develop the ability to modify a solid surface with desired properties
- To know how to apply the knowledge acquired to develop microreactors
- To understand the behavior of fluids at a micro scale
- To know how to design microfluidic circuits
- To know the methods of integration of microfluidic systems with MEMS sensors
- To know the operation and the main configurations of RF-MEMS micro-switches
- To learn how to analyze RF-MEMS micro-switches mechanically and electromagnetically
- To know the applications of RF-MEMS micro-switches to communication circuits
- To understand and to know how to use experimental configurations to characterize MEMS micro-switches
Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>44h</th>
<th>35.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>81h</td>
<td>64.80%</td>
</tr>
</tbody>
</table>
1. Physical Chemistry of surfaces

Description:
Design, preparation, characterization and applications of solid surfaces.

Learning time: 15h
Theory classes: 15h

1.1 Introduction to surfaces

Description:
The surface boundaries. Surfaces at the nanoscale, microscale and macroscale. The importance of defects.

Learning time: 2h
Theory classes: 2h

1.2 Structure of surfaces

Description:
Ordered vs. amorphous surfaces. Epitaxial relationships. Surface vacancies

Learning time: 3h
Theory classes: 3h

1.3 Solid-liquid and solid-gas interphases

Description:
Surface reconstruction and relaxation. Adsorption and desorption phenomena.

Learning time: 2h
Theory classes: 2h

1.4 Characterization techniques

Description:
Surface characterization techniques. Electron microscopy techniques (HRTEM, STEM), scanning probe microscopies (AFM, STM), and spectroscopies (IR, Raman, XPS).

Learning time: 3h
Theory classes: 3h
1.5 Applications in sensors and catalysis

Learning time: 3h
- Theory classes: 3h

1.6 Functionalization of nano- and microreactors

Description: The microreactor concept. Surface activation. Plasma treatment. Surface functionalization

Learning time: 2h
- Theory classes: 2h

2. Mechanics and Fluid mechanics at micron scale

Description: Introduction to Fluid mechanics. Newtonian, non-Newtonian fluids. Flow over infinite plates, laminar and turbulent flow. Compressible and Incompressible flows. Types of flows. Flow rate calculations.

Learning time: 15h
- Theory classes: 15h

2.1 Introduction to micromechanic and microfluidic behavior

Description: Introduction Nanotechnology and MEMS, MEMS design, and fabrication technology - Lithography, Etching, MEMS material, Bulk micromachining, Surface micromachining, Microactuator, electrostatic actuation.

Learning time: 3h
- Theory classes: 3h

2.2 Biosensor structure

Description: Review of sensing principles and micro/nano devices for bio-sensing
 a. Basic principle of biosensors.
 b. Bioelectric potentials and typical bio-targets.
 c. Amperometric, potentiometric and impedimetric biosensors.
 d. Electrochemical sensors and FET-based biosensors.
 e. Acoustic and piezoelectric biosensors.
 f. Optical biosensors

Learning time: 2h
- Theory classes: 2h
2.3 Design and simulation of the biosensor fluidic behavior

| Description:
| Finite element modelling of a microfluidic mixer. |

| Learning time: 3h
| Theory classes: 3h |

2.4 Design and simulation of the biosensor mechanic behavior

| Description:
| Finite element modeling of a mechanical microswitch. |

| Learning time: 3h
| Theory classes: 3h |

2.5 Case studies in bioengineering and communications

| Description:
| Sample preparation microchips: From macro to micro. MEMS-based bio-chip/sensors for Molecules detection |

| Learning time: 2h
| Theory classes: 2h |

3. RF-MEMS micro-devices applied to communication circuits

| Description:
| Micro-devices applied to reconfigurable RF/microwave communication circuits |

| Learning time: 15h
| Theory classes: 15h |

3.1 Introduction to RF-MEMS micro-devices and planar circuits

| Description:

| Learning time: 3h
| Theory classes: 3h |
3.2 Design and simulation of planar RF-MEMS micro-switches

Learning time: 3h
Theory classes: 3h

Description:
Micro-switch structures: ohmic contact and capacitive contact. Mechanical parameters. Equivalent electrical circuit at RF/microwave frequencies. Steady-state analysis. Simulation tools (circuit analysis)

3.3 RF-MEMS micro-switch electromagnetic simulation

Learning time: 3h
Theory classes: 3h

Description:

3.4 Application of RF-MEMS micro-switches to reconfigurable communication circuits. Circuit simulation

Learning time: 3h
Theory classes: 3h

Description:

3.5 Experimental characterization of RF-MEMS micro-switches

Learning time: 3h
Theory classes: 3h

Description:
Experimental set-up. Laboratory measurement of RF-MEMS micro-switches: pull-in and pull-out voltages. Microwave OFF and ON characteristics

Qualification system

E1: Written exams: 50-60%
E3: Assignments: 40-50%
Bibliography

Basic:

Others resources:

- Course notes and presentations (through the UPC Atenea digital campus)
- Student license for simulation software tools