Degree competences to which the subject contributes

Basic:
- CB6. (ENG) Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. (ENG) Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB10. (ENG) Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Learning objectives of the subject

- To know the structure of the surfaces and the main characterization techniques.
- To understand the physical and chemical phenomena that take place on the surfaces of solid materials and their applications.
- To develop the ability to modify a solid surface with desired properties.
- To know how to apply the knowledge acquired to develop microreactors.
- To understand the behavior of fluids at a micro scale.
230852 - SEM - Surface Engineering and Microdevices

- To know how to design microfluidic circuits
- To know the methods of integration of microfluidic systems with MEMS sensors
- To know the operation and the main configurations of RF-MEMS micro-switches
- To learn how to analyze RF-MEMS micro-switches mechanically and electromagnetically
- To know the applications of RF-MEMS micro-switches to communication circuits
- To understand and to know how to use experimental configurations to characterize MEMS micro-switches

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 44h</th>
<th>35.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 81h</td>
<td>64.80%</td>
</tr>
</tbody>
</table>
1. Physical Chemistry of surfaces

Learning time: 15h
Theory classes: 15h

Description:
Design, preparation, characterization and applications of solid surfaces.

1.1 Introduction to surfaces

Learning time: 2h
Theory classes: 2h

Description:
The surface boundaries. Surfaces at the nanoscale, microscale and macroscale. The importance of defects.

1.2 Structure of surfaces

Learning time: 3h
Theory classes: 3h

Description:
Ordered vs. amorphous surfaces. Epitaxial relationships. Surface vacancies.

1.3 Solid-liquid and solid-gas interphases

Learning time: 2h
Theory classes: 2h

Description:
Surface reconstruction and relaxation. Adsorption and desorption phenomena.

1.4 Characterization techniques

Learning time: 3h
Theory classes: 3h

Description:
Surface characterization techniques. Electron microscopy techniques (HRTEM, STEM), scanning probe microscopies (AFM, STM), and spectroscopies (IR, Raman, XPS).
1.5 Applications in sensors and catalysis

Description:

Learning time: 3h
- Theory classes: 3h

1.6 Functionalization of nano- and microreactors

Description:

Learning time: 2h
- Theory classes: 2h

2. Mechanics and Fluid mechanics at micron scale

Description:

Learning time: 15h
- Theory classes: 15h

2.1 Introduction to micromechanics and microfluidic behavior

Description:
Introduction Nanotechnology and MEMS, MEMS design, and fabrication technology – Lithography, Etching, MEMS material, Bulk micromachining, Surface micromachining, Microactuator, electrostatic actuation.

Learning time: 3h
- Theory classes: 3h

2.2 Biosensor structure

Description:

Learning time: 2h
- Theory classes: 2h
2.3 Design and simulation of the biosensor fluidic behavior

Description:
Finite element modelling of a microfluidic mixer.

Learning time: 3h
- Theory classes: 3h

2.4 Design and simulation of the biosensor mechanic behavior

Description:
Finite element modeling of a mechanical microswitch.

Learning time: 3h
- Theory classes: 3h

2.5 Case studies in bioengineering and communications

Description:
Sample preparation microchips: From macro to micro. MEMS-based bio-chip/sensors for Molecules detection.

Learning time: 2h
- Theory classes: 2h

3. RF-MEMS micro-devices applied to communication circuits

Description:
Micro-devices applied to reconfigurable RF/microwave communication circuits.

Learning time: 15h
- Theory classes: 15h

3.1 Introduction to RF-MEMS micro-devices and planar circuits

Description:

Learning time: 3h
- Theory classes: 3h
3.2 Design and simulation of planar RF-MEMS micro-switches

Description:
Micro-switch structures: ohmic contact and capacitive contact. Mechanical parameters. Equivalent electrical circuit at RF/microwave frequencies. Steady-state analysis. Simulation tools (circuit analysis)

Learning time: 3h
Theory classes: 3h

3.3 RF-MEMS micro-switch electromagnetic simulation

Description:

Learning time: 3h
Theory classes: 3h

3.4 Application of RF-MEMS micro-switches to reconfigurable communication circuits. Circuit simulation

Description:

Learning time: 3h
Theory classes: 3h

3.5 Experimental characterization of RF-MEMS micro-switches

Description:
Experimental set-up. Laboratory measurement of RF-MEMS micro-switches: pull-in and pull-out voltages. Microwave OFF and ON characteristics

Learning time: 3h
Theory classes: 3h

Qualification system

E1: Written exams: 50-60%
E3: Assignments: 40-50%
230852 - SEM - Surface Engineering and Microdevices

Bibliography

Basic:

Others resources:

- Course notes and presentations (through the UPC Atenea digital campus)
- Student license for simulation software tools