230859 - FAM - Atomic and Molecular Physics

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 748 - FIS - Department of Physics
Academic year: 2019
Degree: MASTER'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2018). (Teaching unit Optional)
ECTS credits: 4
Teaching languages: English

Teaching staff

Coordinator: Massignan, Pietro Alberto
Others: Rey Oriol, Rosendo

Opening hours

Timetable: By appointment

Requirements

Mechanics, Probability and Statistics, Thermodynamics, Quantum Physics

Teaching methodology

There will be six hours per week of lectures, addressing both theory and practical exercises.

Learning objectives of the subject

- Know how to describe what an atom is, and how it can be treated quantum mechanically
- Understand the behavior of atoms in electromagnetic fields
- Know the reasons that lead to the appearance of the fine and hyperfine structures
- Understand how the symmetries of the wave function and of the orbitals lead to the periodic table of the elements
- Fundamentals of molecular physics
- Approach to recent discoveries and state-of-the-art experimental techniques

Study load

| Total learning time: 100h | Hours large group: 36h | 36.00%
| Self study: 64h | 64.00% |
230859 - FAM - Atomic and Molecular Physics

Content

<table>
<thead>
<tr>
<th>Topics</th>
<th>Learning time: 100h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 28h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 20h</td>
</tr>
<tr>
<td></td>
<td>Self study: 48h</td>
</tr>
</tbody>
</table>

Description:

- Introduction: the hydrogen atom
- Interaction between atoms and external fields (static, and oscillating)
- Fine and hyperfine structure
- Selection rules
- Symmetries of the wave function
- Atoms with many electrons (Thomas Fermi model, and Hartree-Fock method)
- Understanding the periodic table of the elements
- Molecular structure and degrees of freedom
- Advanced spectroscopy techniques: infra-red, Raman, and nuclear magnetic resonance
- Laser cooling and preparation of ultra-cold quantum gases of bosons and fermions

Qualification system

The final score will result from the weighted average of three marks (or "evaluation systems"):
- E1 (50%): written tests and/or homework assignments.
- E3 (30%): written report of a personal project.
- E2 (20%): oral presentation and defense of the aforementioned personal project.

Bibliography

Basic: