230860 - CBS - Complexity in Biological Systems

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering

Teaching unit: 748 - FIS - Department of Physics

Academic year: 2019

Degree: MASTER'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2018). (Teaching unit Optional)

ECTS credits: 4

Teaching languages: English

Teaching staff

- **Coordinator:** Alonso Muñoz, Sergio
- **Others:** Pons Rivero, Antonio Javier

Teaching methodology

Master class, written work, problem resolutions, practical exercises, search of information, practices

Learning objectives of the subject

- Understand what a complex system is and how to characterize it.
- Obtain a basic knowledge in biological phenomena, from the molecular/cellular scale to the macroscale.
- Dominate numerical techniques and use specific software related with the subject.
- Be able to include the theoretical knowledge to solve biological problems.
- Be able to present the results of a project in a written text and orally, using a precise language and putting the results in the correct context.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 100h</th>
<th>Hours large group:</th>
<th>36h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>64h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex spatio-temporal dynamics in biology</td>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td></td>
<td>Self study: 16h</td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Oscillations, excitability, bistability</td>
<td></td>
</tr>
<tr>
<td>Synchronization in biological systems</td>
<td></td>
</tr>
<tr>
<td>Spatio-temporal chaos: Cardiac fibrillation</td>
<td></td>
</tr>
</tbody>
</table>

Analisi of complex biosignals	Theory classes: 9h
	Self study: 16h
Description:	
Deterministic and stochastic signals	
Statistical properties	
Nonlinear analysis of temporal series	

Self-organization in biological systems	Theory classes: 9h
	Self study: 16h
Description:	
Self-assembling: protein folding, and membrane formation	
Growing processes: chemotaxis, tumor growing and morphogenesis	
Flocking, swarming y gregarious behavior	

Biological networks	Theory classes: 9h
	Self study: 16h
Description:	
Metabolic networks, interactome, regulatory and signal networks	
Neural networks, functional networks and conectome	
Networks in ecology and epidemiology	

Qualification system

Written test (30%)
Oral test (40%)
Works done by the student (30%)

Bibliography