Course guide
230997 - SECON - Secure Communications in Fiber-Optic Networks

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Optional subject).
MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Optional subject).
MASTER'S DEGREE IN CYBERSECURITY (Syllabus 2020). (Optional subject).

Academic year: 2022 ECTS Credits: 5.0 Languages: English

LECTURER
Coordinating lecturer: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura
Others: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

PRIOR SKILLS
Programing skills
Fundamentals of communication networks

TEACHING METHODOLOGY
Lectures
Laboratory practical work
Individual and group assignments

LEARNING OBJECTIVES OF THE SUBJECT
The main objective of this course is to train students in methods of understanding, evaluating and designing mechanisms for implementing security protocols in fiber optic based networks. The main concepts and specificities of optical networks regarding security issues are introduced and practical solutions are studied.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>33,0</td>
<td>26.40</td>
</tr>
<tr>
<td>Hours small group</td>
<td>6,0</td>
<td>4.80</td>
</tr>
<tr>
<td>Self study</td>
<td>86,0</td>
<td>68.80</td>
</tr>
</tbody>
</table>
Total learning time: 125 h
1. Fiber-Optic Networks Fundamentals

Description:
- Fiber-Optic Communications
- What’s an Optical Fiber?
- Brief Historical Perspective
- Fiber-Optic Communications System

The Optical Layer
- Basic Photonic Devices
- Intensity Modulation / Direct Detection (IMDD)
- IQ Modulation / Coherent Detection
- Signal Propagation Through O.F.
- Fiber-Optic Networks
- All Optical Networks (AON)
- Optical Networking Essentials
- Software-Defined Networks (SDN)

Full-or-part-time: 19h
- Theory classes: 4h
- Guided activities: 2h
- Self study: 13h

2. Security Issues in Optical Networks

Description:
- Network Security
 - Security layers
 - Security threats
 - Security tools
- All Optical Networks
 - AON vulnerabilities
 - Types of attacks
 - Network management implications
 - Prevention, detection and reaction
- Optical Access Networks
 - Fiber-to-the-home (FTTH)
 - Passive optical networks (PON)
 - GPON (ITU-T G.984.3) security
- Layer 1 Encryption
 - Unbeatable bandwidth and latency (vs. IPSec and MacSec)
- Optical Transport Networks (OTN)
- Commercial Solutions

Full-or-part-time: 19h
- Theory classes: 4h
- Guided activities: 2h
- Self study: 13h
3. Limitations of Physical Layer-Agnostic Security Technologies

Description:
Types of security
- The Ignored Security Tool
- Unconditional, Computational and Information-Theoretic security
Information-Theoretic security
- Shannon’s Perfect Secrecy
- Secure Communication over Noisy Channels
- Channel Coding for Secrecy
- Secret-Key Agreement from Noisy Observations
- Comparison with Classical Cryptography
The thread of quantum computing
- The Quantum Computer
- The Problem
- Quantum Threat Timeline
- From Cbits to Qbits
- Shor’s algorithm
Post-quantum cryptography
- Is Cryptography Dead?
- Challenges in Post-Quantum Cryptography
- Comparison to Quantum Cryptography
- Families of Post-Quantum Algorithms
- Post-Quantum Cryptography Standardization

Related activities:
Real time encryption algorithms analysis, simulation and comparison

Full-or-part-time: 29h
Theory classes: 4h
Laboratory classes: 3h
Guided activities: 2h
Self study: 20h

4. Security Technologies for the Optical Layer

Description:
Optical Layer Fundamentals
- Light Properties
- Light-Matter Interaction
- Optical Fibers
- Lasers, Photodetectors and Amplifiers
- Transmitters and Receivers
Secure Communications in Fiber-Optic Networks
- Confidentiality
- Privacy
- Availability
Confidentiality/Authentication: Optical Encryption
- Optical Code Division Multiplexing (OCDM)
- The Y-00 Stream Cipher
- Optical Key Distribution
- Spatial Division Multiplexing (SDM)

Full-or-part-time: 29h
Theory classes: 6h
Guided activities: 3h
Self study: 20h
5. Quantum Security Technologies

Description:
Quantum Tools for Classic Cryptography
- Quantum random number generators (QRNG)
- Quantum noise-randomized ciphers (QNRC)
Quantum Cryptography
- Quantum mechanics fundamentals
- Quantum key distribution (QKD)

Related activities:
Lab Practice: QKD algorithms analysis, simulation and comparison

Full-or-part-time: 29h
 - Theory classes: 4h
 - Laboratory classes: 3h
 - Guided activities: 2h
 - Self study: 20h

GRADING SYSTEM

Personal assignments (40%), Group assignments (20%), Final exam (40%)

BIBLIOGRAPHY

Basic: