Course guide
240315 - 240NR022 - Human-Machine Interfaces

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control.
Degree: MASTER'S DEGREE IN NEUROENGINEERING AND REHABILITATION (Syllabus 2020). (Compulsory subject).
Academic year: 2022 ECTS Credits: 4.5 Languages: English

LEETRER

Coordinating lecturer: Romero Lafuente, Sergio
Others: Bachiller Matarranz, Alejandro
Jordanic, Mislav

REQUIREMENTS

Students must pass the subject Biomedical Signals. Students must also pass or take simultaneously the subject Data Analysis in Rehabilitation.

TEACHING METHODOLOGY

· Receive, understand and synthesize knowledge.
· Consider and solve problems, and analyze results.
· Perform a teamwork about developing an application of a BCI system. At the end of the course, the students will defend their project orally.

LEARNING OBJECTIVES OF THE SUBJECT

The main objective is to introduce the field of human-machine interface (HMI) and in particular to the systems that translate a measure of a user’s brain activity into messages or commands for an interactive application (BCI, brain-computer interfaces). Other objectives include:
· To introduce brain and muscular recording and stimulation technologies.
· To present the basic components of an HMI system.
· To review the major applications of BCIs considering some ethical aspects.
At the end of the course, the student must be able to design, program and develop a BCI communication system.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>72,0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>20,0</td>
<td>17.78</td>
</tr>
<tr>
<td>Hours large group</td>
<td>20,5</td>
<td>18.22</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h
CONTENTS

Topic 1. Introduction to human-machine interfaces

Description:

Full-or-part-time: 7h 30m
Theory classes: 3h
Self study: 4h 30m

Topic 2. Evoked related potentials (ERP)

Description:
Visual, auditory, somatosensory and motor ERP. Most important waveforms. Applications in neurologic disorders.

Full-or-part-time: 15h
Theory classes: 3h
Laboratory classes: 3h
Self study: 9h

Topic 3. Brain computer interfaces (BCI)

Description:

Full-or-part-time: 45h
Theory classes: 6h
Laboratory classes: 12h
Self study: 27h

Topic 4. Motor imagery

Description:
BCIs based on movement intention for rehabilitation. High-density EMG signals (HD-EMG): acquisition and processing.

Full-or-part-time: 144h
Theory classes: 6h
Laboratory classes: 3h
Self study: 135h

Topic 5. Applications and ethical issues

Description:
Medical and non-medical applications. Ethical issues. Future perspectives on BCIs.

Full-or-part-time: 7h 30m
Theory classes: 3h
Self study: 4h 30m
GRADING SYSTEM

The final mark is the weighted sum of the following marks:
Nfe: Final exam mark
Nlabs: Mark of the laboratory sessions (attendance, participation)
NpBCI: Mark obtained in the group project on a BCI application (work and oral dissemination).
Nfinal = 0.3 Nfe + 0.2 Nlabs + 0.5 NpBCI
Students who do not submit the final exam or do not perform the BCI project will be denoted as "Not taken".

EXAMINATION RULES.

Students who do not submit the final exam or do not perform the BCI project will be denoted as "Not taken".

BIBLIOGRAPHY

Basic:

Complementary: