Course guide
240327 - 240IIT33 - Sensors and Communications

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering.
Degree: MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Optional subject).
Academic year: 2023 ECTS Credits: 4.5 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: Calomarde Palomino, Antonio
Others:

PRIOR SKILLS
It is convenient to have passed the subject "Ampliació d'Electrònica"
C / C ++ language programming
Basic knowledge of microcontrollers

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEMEI07. Ability to design electronic systems and industrial instrumentation.
CEETI2. (ENG) Modelar sistemes de comunicació i gestió de dades entre processos mitjançant protocols de comunicació i de forma segura. (Competència específica associada a l'especialitat en Tecnologies de la Informació per a la Industria).
CEETI5. (ENG) Disseñar sistemas de comunicación que enlacen sensores, controladores e actuadores (Competència específica associada a l'especialitat en Tecnologies de la Informació per a la Industria).

Generical:
CGMEI08. (ENG) Aplicar els coneixements adquirits y resoldre problemas en entorns nous o poc coneguts dintre de contextos més amplis i multidisciplinaris.

TEACHING METHODOLOGY
The course uses, approximately, the exposition/participation methodology in 25%, individual work in 50%, and group work in 25%. Cooperative work techniques and problem- and project-based learning techniques are also used. The realization of the lab sessions is a condition to pass the subject.

LEARNING OBJECTIVES OF THE SUBJECT
Understand, analyze and know how to apply the appropriate techniques for IoT in different industrial fields

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>20.3</td>
<td>18.03</td>
</tr>
<tr>
<td>Self study</td>
<td>72.0</td>
<td>63.94</td>
</tr>
<tr>
<td>Hours small group</td>
<td>20.3</td>
<td>18.03</td>
</tr>
</tbody>
</table>
CONTENTS

Sensors and Their Characteristics

Description:
Resolution of a Sensor
Accuracy of a Sensor
Gain Error, Offset and Offset Drift of a Sensor
Linear and Nonlinear Characteristics of a Sensor
Transient and Steady State Responses of a Sensor
'Static' and 'Dynamic' Characteristics of a Sensor

Full-or-part-time: 12h
Theory classes: 5h
Self study: 7h

Analog Signal Conditioning in Instrumentation

Description:
content english

Full-or-part-time: 12h
Theory classes: 5h
Self study: 7h

Noise and Coherent Interference in Measurements

Description:
Descriptions of Random Noise in Circuits
Propagation of Gaussian Noise through Linear Filters
Broadband Noise Factor and Noise Figure of Amplifiers
Spot Noise Factor and Figure

Full-or-part-time: 12h
Theory classes: 5h
Self study: 7h

Introduction to the Internet of Things

Description:
The meaning of IoT
A brief history of IoT
Technologies that enable the IoT paradigm
The technical challenges facing IoT ecosystems
Opportunities and potential applications

Full-or-part-time: 1h 30m
Theory classes: 0h 30m
Self study: 1h
IoT System Architectures and Standards

Description:
Key considerations for IoT architectures
Cloud, fog, and edge paradigms
The role of gateways in IoT
IoT internetworking approaches
Standards that enable practical IoT deployment and interoperability

Full-or-part-time: 1h 30m
Theory classes: 0h 30m
Self study: 1h

Introduction to Embedded Systems

Description:
An overview of embedded systems
Examples of embedded systems
Features of embedded systems
Software for embedded systems
Embedded systems programming and debugging

Related activities:
C Introduction and integrated development environment

Full-or-part-time: 5h
Theory classes: 0h 30m
Laboratory classes: 1h 30m
Self study: 3h

Hardware Platforms for IoT

Description:
What is a hardware platform
Types of memory
Power saving techniques
Types of sensors
Analog-to-digital conversion

Full-or-part-time: 1h 30m
Theory classes: 0h 30m
Self study: 1h
The Arm Cortex-M4 Processor Architecture

Description:
What is the Arm architecture
Arm processor families
The ARM Cortex-R series
The Arm Cortex-M series

Related activities:
Digital I/O access on ST Nucleo-64 boards

Full-or-part-time: 5h
Theory classes: 1h
Laboratory classes: 2h
Self study: 2h

Introduction to Cortex-M4 Programming

Description:
Cortex-M4 Processor Overview
Cortex-M4 Block Diagram
Cortex-M4 Registers
Cortex-M4 Memory Map
ARM Cortex-M4 Processor Instruction Set

Full-or-part-time: 5h
Theory classes: 1h
Self study: 4h

MCU extensions

Description:
Digital inputs and outputs
Analog inputs and outputs
Timers and PWM
Serial communication
DMA

Full-or-part-time: 9h
Theory classes: 2h
Self study: 7h

Interrupts and Low Power Features

Description:
Exception and Interrupt Concepts
Core Interrupts
Using Port Module and External Interrupts
Timing Analysis
Program Design with Interrupts
Sharing Data Safely Between ISRs and Other Threads

Full-or-part-time: 3h
Theory classes: 1h
Self study: 2h
Real Time Operating Systems

Description:
Operating System Overview
What is an Operating System?
Functions, types, and services of Operating Systems

Real-Time Operating System (RTOS)
RTOS overview
RTOS task scheduling
Keil RTX RTOS

RTOS on Mbed Platform
Mbed RTOS API
Using Mbed RTOS API for your project
Threads, Mutex, and Semaphore

Full-or-part-time: 3h
Theory classes: 1h
Self study : 2h

IoT Connectivity

Description:
Introduction to Bluetooth
Bluetooth Low Energy (BLE)
BLE profiles
New features in Bluetooth 5
ZigBee
Wireless Local Area Networks (WLAN)
IEEE 802.11 based WLANs
IEEE 802.11 enhancements
Low-power Wide Area Networks (LPWAN)
LoRaWAN
Narrow-band IoT (NB-IoT)

Related activities:
Communication with bluetooth
Communication via Wifi
LoraWan

Full-or-part-time: 21h
Theory classes: 4h 30m
Laboratory classes: 4h 30m
Self study : 12h
The Cloud

Description:
What is the cloud?
Virtualization
Cloud interfacing protocols
Big data processing
Device management platform

Full-or-part-time: 7h
Theory classes: 1h
Self study : 6h

IoT Security

Description:
Importance of security in IoT
Threat modeling
Code signing
Encryption
Wireless security

Full-or-part-time: 11h 30m
Theory classes: 2h
Laboratory classes: 1h 30m
Self study : 8h

Current and Future trends of IoT

Description:
Current state of IoT landscape
Machine learning
Edge computing
Platform Security Architecture
Research topics

Full-or-part-time: 0h 30m
Theory classes: 0h 30m

GRADING SYSTEM

The final grade for the course will be:
NF = max (0.60 * NE + 0.4 * NL; 0.6 * NEF + 0.4 * NL)
NF: Final note.
NE: Exercises, problems and/or tests.
NEF: Final exam grade
NL: lab. sessions.
BIBLIOGRAPHY

Basic: