Course guide

240IEN11 - 240IEN11 - Renewable Energy

<table>
<thead>
<tr>
<th>Unit in charge:</th>
<th>Barcelona School of Industrial Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching unit:</td>
<td>729 - MF - Department of Fluid Mechanics.</td>
</tr>
<tr>
<td>Degree:</td>
<td>MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Optional subject).</td>
</tr>
<tr>
<td>Academic year:</td>
<td>2023</td>
</tr>
<tr>
<td>ECTS Credits:</td>
<td>4.5</td>
</tr>
<tr>
<td>Languages:</td>
<td>English</td>
</tr>
</tbody>
</table>

LECTURER

- **Coordinating lecturer:** Eduard Egusquiza
- **Others:** Enrique Velo, Josep Bordonau, Oriol Gomis

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
- CEEELEC3. Project conventional and non-conventional electrical facilities (renewable energies).
- CEMEI01. Knowledge and ability to analyse and design the generation, transport and distribution systems in electric energy.
- CEMEI05. Knowledge and ability for the design and analysis of thermal machines and engines, hydraulic machines and heating and cooling plants.

TEACHING METHODOLOGY

Lectures, exercises in class with professor assistance and conducting exercises outside the classroom individually.

LEARNING OBJECTIVES OF THE SUBJECT

Provide the students with a theoretical/practical background on:
- Demand and generation of electricity
- Operation of power plants using Hydraulic, marine, wind, geothermal, solar and biomass renewable energy.
- Integration of renewable energy into the electrical grid

Acquisition by the student of the basic phenomena that occur during plant operation

Provide tools for basic calculations
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>72.0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>27.0</td>
<td>24.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>13.5</td>
<td>12.00</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h

CONTENTS

Introduction

Description:
Demand and generation of electricity. Variation in demand. Types of power plants. Renewable energies, types, advantages.

Full-or-part-time: 1h 30m
Theory classes: 1h 30m

Hydropower

Description:

Full-or-part-time: 12h
Theory classes: 12h

Marine energy

Description:
Ocean energy: tides, waves, currents. Ways to extract energy. Tidal power plants, wave converters, hidromills. Description and operation of the main types. Present Status.

Full-or-part-time: 3h
Theory classes: 3h

Wind power

Description:
Wind energy. Introduction to wind turbines, types, wind farms, components. Airfoils aerodynamics, boundary layer detachment, operating limits. Generators, types of regulation

Full-or-part-time: 7h 30m
Theory classes: 7h 30m
Temperature distribution in the Earth, generating plants. Types, operation

Full-or-part-time: 3h
Theory classes: 3h

Solar energy

Description:
Solar radiation, solar thermal energy, concentration systems. Description and operation. Photovoltaic power plants

Full-or-part-time: 7h 30m
Theory classes: 7h 30m

Biomass energy

Description:
Sources of biomass, plant types, description and operation

Full-or-part-time: 3h
Theory classes: 3h

Integration of new renewables into the electrical grid

Description:

Full-or-part-time: 3h
Theory classes: 3h

GRADING SYSTEM

Continuous evaluation: Two midterm exams with theory and exercises (40%) will be carried out during the course (40%).
The final examination will consist of a theoretical part (50%) and problems (50%).
Final marks: 0.6 final exam marks + 0.4 continuous evaluation marks
Re-evaluation exam: For attending the re-evaluation exam the students must have attended the final exam or the two midterm exams.