250401 - MECMEDCON - Mechanics of Continua

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN CIVIL ENGINEERING (PROFESSIONAL TRACK) (Syllabus 2012). (Teaching unit Compulsory)
ECTS credits: 9
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: FRANCISCO JAVIER OLIVER OLIVELLA
Others: ORIOL LLOBERAS VALLS, FRANCISCO JAVIER OLIVER OLIVELLA

Opening hours
Timetable: Office hours to be arranged with the lecturers of the course.

Degree competences to which the subject contributes

Specific:
8226. Comprehension and mastery of the laws governing the thermomechanics of continuous media for their application in fields of engineering such as fluid mechanics, the mechanics of materials, structural theory, etc.

Transversal:
8562. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
8563. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

The course uses the "flipped classroom" methodology where the student, by means of specific group-dynamics techniques, extends and consolidates the knowledge acquired during the out-of-class preparation, in advance, of basic elements corresponding to the following classes. The out-of-class preparation is carried out by the student, supported by videos, transparencies, books and bibliographic material, provided on the website of the course, and according to the directions of the teacher. Then, the in-class group dynamics consists of providing the group of students the required additional knowledge, according to the possible weaknesses identified by the teacher, perform practical exercises, answer questions, deepen the students knowledge on the subject and promote teamwork.

Learning objectives of the subject

Students will acquire advanced knowledge of the laws of thermodynamics for continuous media and learn how they apply to engineering disciplines such as fluid mechanics, mechanics of materials and structural theory.

Upon completion of the course, students will be able to:

Describe motion, deformation and stress;
Apply conservation equations to structural problems in hydraulics and geotechnics;
Model the behaviour of solid and fluid materials and interpret the results.
History of the mechanics of continuous media in the context of civil engineering; Describing motion: Lagrange-Euler formulation; Deformations of a continuous medium and compatibility equations; Motion and deformations in cylindrical and spherical coordinates; Cauchy stress, postulates and equations; Mohr's circle stress analysis; Equations of conservation of mass, momentum and energy; Thermodynamics of continuous media; Fundamentals of constitutive equations; Theory of elasticity, plasticity, fracture criteria and viscoplasticity; Principle of virtual work; Fluid constitutive behaviour; Fluid mechanics; Equations of motion; Turbulence.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 225h</th>
<th>Theory classes: 38h 58.2m 17.32%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 19h 31.8m 8.68%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 19h 31.8m 8.68%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 2h 58.2m 1.32%</td>
</tr>
<tr>
<td></td>
<td>Self study: 144h 64.00%</td>
</tr>
</tbody>
</table>

Last update: 16-12-2019
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>Learning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Introduction to the course and review of tensor algebra.</td>
<td>4h 48m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Description of Motion</td>
<td></td>
<td>14h 23m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory classes: 3h 30m</td>
</tr>
<tr>
<td>Deformation and Strain</td>
<td></td>
<td>24h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory classes: 7h 30m</td>
</tr>
<tr>
<td>Compatibility Equations</td>
<td></td>
<td>7h 11m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Topic</td>
<td>Learning Time</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td>21h 36m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Theory, Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation and Balance Equations</td>
<td>31h 12m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Theory, Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Elasticity</td>
<td>27h 36m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Theory, Problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane Linear Elasticity</td>
<td>4h 48m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Theory</td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **Stress**: Theory, Problems
- **Conservation and Balance Equations**: Theory, Problems
- **Linear Elasticity**: Theory, Problems
- **Plane Linear Elasticity**: Theory

Learning time breakdown:
- **Stress**: Theory classes: 7h 30m, Practical classes: 1h 30m, Self study: 12h 36m
- **Conservation and Balance Equations**: Theory classes: 9h, Practical classes: 3h, Laboratory classes: 1h, Self study: 18h 12m
- **Linear Elasticity**: Theory classes: 7h 30m, Practical classes: 4h, Self study: 16h 06m
- **Plane Linear Elasticity**: Theory classes: 2h, Self study: 2h 48m
Plasticity

Description:
- Theory
- Problems

Learning time: 22h 48m
- Theory classes: 5h
- Practical classes: 3h 30m
- Laboratory classes: 1h
- Self study: 13h 18m

Constitutive Equations in Fluids

Description:
- Theory

Learning time: 4h 48m
- Theory classes: 2h
- Self study: 2h 48m

Fluid Mechanics

Description:
- Theory
- Problems

Learning time: 19h 12m
- Theory classes: 5h
- Practical classes: 3h
- Self study: 11h 12m

Variational Principles

Description:
- Theory and problems

Learning time: 4h 48m
- Theory classes: 1h
- Laboratory classes: 1h
- Self study: 2h 48m
The evaluation of the course will be made from two grades:
a) A grade based on the performance of midterms, multiple-question type. Four partial tests, on contents grouped by topics of the course, will be made. These tests will be about one hour long, and will be done along the course during lecture hours. The final mark of the assessment will result into a "Mid-terms evaluation mark" (NAP) to be obtained as a combination of the arithmetic average (with a weight of 0.9) and the geometric average (with a weight of 0.1) of partial evaluations, on 10 points.
b) A grade based on individual perception, by the lecturer, about the "global" knowledge of the subject by each student, the involvement in the learning dynamics proposed in classes and the group-work skills acquired over the course. This assessment will be done on the basis of the continuous in-class lecturer-students interaction throughout the course and the final perception of the lecturer. The grading will result in a "teachers perception mark" (NP) on 10 points.

The final mark (NF) will be weighted between the two marks as $NF=\max(NAP; 0.8*NAP+0.2*NP)$ rounded to the lower multiple of 0.1.

To pass the course, the student will need to obtain a mark (NF) equal to or greater than 5.

If any of the ongoing evaluation activities are not performed in the scheduled period a zero mark will be assigned to that activity.

In case of failure to attend an assessment test due to a justifiable reason, the student must notify the professor in charge of the course BEFORE OR IMMEDIATELY AFTER THE TEST and hand in an official certificate excusing his absence. In this case, the student will be allowed to take the test another day, ALWAYS BEFORE THE FOLLOWING ASSESSMENT.

Bibliography

Basic:

Complementary:

