250404 - INFRAHID - Hydraulic Infrastructure

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN CIVIL ENGINEERING (PROFESSIONAL TRACK) (Syllabus 2012). (Teaching unit Compulsory)
ECTS credits: 4,5
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: FRANCESC XAVIER GIRONELLA I COBOS
Others: JOSE MIGUEL DIEGUEZ GARCIA, CARLES FERRER BOIX, FRANCESC XAVIER GIRONELLA I COBOS, VICENTE GRACIA GARCIA, JUAN PEDRO MARTÍN VIDE

Opening hours
Timetable: To consult with the teacher.

Degree competences to which the subject contributes

Specific:
8230. The ability to plan, dimension, construct and maintain hydraulic works.
8231. The ability to plan, evaluate and regulate the use of surface water and groundwater resources.
8233. Knowledge of and the ability to understand dynamic phenomena of the coastal ocean and atmosphere and respond to problems encountered in port and coastal areas, including the environmental impact of coastal interventions. The ability to analyse and plan maritime works.

Transversal:
8562. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
8563. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

The course consists of 3 hours per week that are dedicated to lectures where the professor explains the concepts and basic materials of the matter, practical lessons with examples and exercises, and laboratory sessions where groups of three students develop a guided work.

Learning objectives of the subject

Students will learn to design and dimension hydraulic works and installations and hydroelectric installations and to plan and manage surface and underground hydraulic resources. Basic knowledge of maritime engineering as well as capacity for the construcción and conservation of maritime works.

Upon completion of the course, students will be able to:

Analyse fluvial sediment transport, flooding and different concepts of restoration;
Conduct a hydraulic power analysis of a hydroelectric installation; Plan hydraulic works. Realize a project of a hydraulic work. Realize a study of surge from royal measures proceeding from a buoy. To realize the project of a port including basic elements. To do a study of dynamics of coasts, including the interaction between port - coast.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>19h 29,4m</td>
<td>17.32%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>9h 46,2m</td>
<td>8.68%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>9h 46,2m</td>
<td>8.68%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>1h 29,4m</td>
<td>1.32%</td>
</tr>
<tr>
<td>Self study:</td>
<td>72h</td>
<td>63.99%</td>
</tr>
</tbody>
</table>
250404 - INFRAHID - Hydraulic Infrastructure

| Total learning time: | 112h |

Total learning time: 112h
| 31.2m | |
Content

HYDRAULIC ENGINEERING

Description:
Exercises
Locks. Exercises
Type uses. Decrpició element of exploitation.
Hydroelectric exploitation. Exercises.

Specific objectives:
Establish the differences with the channels. Understanding the nature of rivers in plan and section. Understanding what determines the river forms and why.
Knowledge to design and introduce the study of locks
Show students the knowledge and criteria for designing and calculating hydraulic infrastructure for energy generation.

Learning time: 57h 35m
Theory classes: 17h
Practical classes: 7h
Self study: 33h 35m

Maritime Engineering

Description:
Extension for the design of seawalls with the presentation of more formulations and their applicability to the calculation of sections of seawalls. New types of dikes.
Practical application to real cases of seawalls in port works.
Working with students to apply a spreadsheet (excel) formulations for the design of seawalls.
Description of Levels I, II and III. Comparison with deterministic design. Concepts of modes of breakdown and breakdown of equations.
Practical application to real cases of seawalls in port works.
Working with students to apply a spreadsheet (excel) Levels I, II and III of probabilistic design in a seawall.

Specific objectives:
Conexaments intensify the students in the design of seawalls port.
Helping students to understand the issue and applicability of the theory.
Teamwork and forme guided to apply the concepts that the student has learned in a practical way.
Understand the foundations of probabilistic design concepts applied to maritime engineering.
Helping students to understand the issue and applicability of the theory.
Teamwork and forme guided to apply the concepts that the student has learned in a practical way.

Learning time: 31h 12m
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 7h
Self study: 18h 12m
The mark of the course is obtained from 5 required practical works (3 from hydraulics and 2 from maritime) distributed along the course. The final mark is obtained by the arithmetic mean of the 5 practical works. Failure to reach an approved mark, exists the option to attend an evaluation of all the matter.

The course is structured in five subjects and it will be evaluated with five exercises and one test.

Each exercise could be individual or in group. In this case, it will be accepted a maximum of three students. There will be five exercises (one per subject), three of which are hydraulic subject and two are maritime subject.

The course score is divided into 70% of the exercises and 30% of the test exam. Exercises and test have an score of 0 to 10. Each exercise has a weighted factor (subject hours/course hours) to obtain the overall score of exercises.

The test exam will be held in January, during school hours. It will last two hours and will have 20 questions divided according to the subjects:
- Theme I - 2 questions
- Theme II - 6 questions
- Theme III - 4 questions
- Theme IV - 4 questions
- Theme V - 4 questions

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.
Bibliography

Basic:

Complementary: