Course guides
250405 - ENGINESTR - Structural Engineering

Unit in charge: Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.

Degree:
- MASTER'S DEGREE IN STRUCTURAL AND CONSTRUCTION ENGINEERING (Syllabus 2009). (Compulsory subject).
- MASTER'S DEGREE IN CIVIL ENGINEERING (PROFESSIONAL TRACK) (Syllabus 2012). (Compulsory subject).
- MASTER'S DEGREE IN CIVIL ENGINEERING (PROFESSIONAL TRACK) (Syllabus 2012). (Compulsory subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: English, Spanish

LECTURER

Coordinating lecturer: EUGENIO OÑATE IBAÑEZ DE NAVARRA
Others: GABRIEL BUGEDA CASTELLOTT, MIGUEL ANGEL CELIGUETA JORDANA, IGNASI DE POUPLANA SARDÀ, DANIEL DI CAPUA, EUGENIO OÑATE IBAÑEZ DE NAVARRA, JOSE FRANCISCO ZARATE ARAIZA

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
- 8162. Knowledge of all kinds of structures and materials and the ability to design, execute and maintain structures and buildings for civil works.
- 8228. Knowledge of and competence in the application of advanced structural design and calculations for structural analysis, based on knowledge and understanding of forces and their application to civil engineering structures. The ability to assess structural integrity.

Transversal:
- 8559. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding the mechanisms on which scientific research is based, as well as the mechanisms and instruments for transferring results among socio-economic agents involved in research, development and innovation processes.
- 8562. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
- 8563. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

TEACHING METHODOLOGY

The course consists of 2.7 hours a week of classes in the classroom where the teacher presents the concepts and basics of the course. Also 0.9 hours per week is spending in a middle group format, to problem solving with more interaction with the student. Practical exercises are solved to consolidate the general and specific learning objectives. Support material is used in the form of detailed teaching plan stored at the Virtual Center http://www.cimne.com/cdl1/ctrhome/2: content, programming and evaluation activities directed learning and literature.
LEARNING OBJECTIVES OF THE SUBJECT

Students will learn to apply their knowledge of structural engineering and to use advanced calculation methods to analyse, dimension and interpret the resistance behaviour of structures.

Upon completion of the course, students will be able to:

Apply their knowledge of structural engineering and use advanced calculation methods to analyse, dimension and interpret the resistance behaviour of structures;
Use dynamic analysis to examine the seismic behaviour of structures and apply advanced design techniques to improve seismic response;
Use advanced coupled nonlinear models to analyse and diagnose the possible limit states and ultimate limit states encountered during the life cycle of a structure;
Evaluate and mitigate structural seismic hazards;
Conduct durability and vulnerability studies.

Concepts and formulations of the finite element method: Application to the structural analysis of classic and advanced (composite) materials under static and dynamic conditions; Linear problems and introduction to nonlinear problems; Methods applicable to common engineering structures and materials, including dams, tunnels, tanks, sheets, buildings, bridges, mechanical components and plates: Fundamental theoretical aspects and main computational aspects; Hands-on sessions on engineering applications and structures

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided activities</td>
<td>2,0</td>
<td>1.33</td>
</tr>
<tr>
<td>Hours large group</td>
<td>26,0</td>
<td>17.33</td>
</tr>
<tr>
<td>Hours small group</td>
<td>13,0</td>
<td>8.67</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>13,0</td>
<td>8.67</td>
</tr>
<tr>
<td>Self study</td>
<td>96,0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction

Description:
Introduction and discrete systems

Specific objectives:
Describe the course and present the analogy with discrete and bar systems.

Full-or-part-time: 4h 48m
Theory classes: 2h
Self study : 2h 48m
2D Solids

Description:
Structural analysis in plane stress and strain assumptions as well in axisymmetric 3D structures.
Introduction to Programming the FEM in MATLAB
Learning a finite element program
Solution of two-dimensional structures using FEM

Specific objectives:
- Present the finite element method in two-dimensional elasticity problems
- Learn to programming and solve with the program the finite element method
- Consolidate the use of computers for solving problems using FEM

Full-or-part-time: 28h 47m
- Theory classes: 8h
- Practical classes: 4h
- Self study: 16h 47m

3D Solid

Description:
Define the finite element method in three-dimensional elasticity problems.
Solution of 3D structures using the FEM

Specific objectives:
- Consolidate the MEF study by its matrix formulation.
- Consolidate the use of computers to solve problems by the FEM

Full-or-part-time: 9h 36m
- Theory classes: 2h
- Practical classes: 2h
- Self study: 5h 36m

Beams

Description:
Study the theories of Timoshenko and Euler_Bernulli for solving bending beams.

Specific objectives:
- Studying higher-order elements and know the complications that can present the numerical solution of a problem by the FEM

Full-or-part-time: 14h 23m
- Theory classes: 6h
- Self study: 8h 23m

Evaluation

Full-or-part-time: 9h 36m
- Laboratory classes: 4h
- Self study: 5h 36m
Plates

Description:
Further application of FEM for thin and thick plates analysis using the Kirchhoff and Reissner-Mindlin theories. Analyse the application to composite materials.
Solving plate structures using the FEM

Specific objectives:
Extending theories of beams to two-dimensional case
Consolidate the use of computers to solve problems by the FEM

Full-or-part-time: 19h 12m
Theory classes: 6h
Practical classes: 2h
Self study : 11h 12m

Shells

Description:
Develop the FEM to the analysis of thin and thick shells extending Kirchoff theories and Reissner-Mindlin as well as the 2D plane stress to the 3D flat shells analysis.
Shells structures solution using the FEM

Specific objectives:
Expanding and combining elasticity theories applied to the FEM
Consolidate the use of computers to solve problems using the FEM

Full-or-part-time: 24h
Theory classes: 8h
Practical classes: 2h
Self study : 14h

real examples

Description:
Presentation of real studies conducted by engineering firms.

Specific objectives:
Knowing the actual use of the method and its scope.

Full-or-part-time: 4h 48m
Theory classes: 2h
Self study : 2h 48m

Introduction to dynamic analysis

Description:
Introduction to dynamic analysis of structures using the FEM

Specific objectives:
show the scope of the FEM in the structures design.

Full-or-part-time: 4h 48m
Theory classes: 2h
Self study : 2h 48m
Introduction to nonlinear problems

Description:
Introduction to nonlinear analysis and coupled problems, using the FEM

Specific objectives:
show the scope of the FEM in structural design.

Full-or-part-time: 4h 48m
Theory classes: 2h
Self study : 2h 48m

GRADING SYSTEM

The mark will be obtained from continuous assessment (40%) and the average of two exams (60%).
Continuous assessment involves solving individual exercises. These exercises will be graded with a maximum score of four (4) points:
One (1) point for the practical exercises solved at class time and three (3) points for the finite element method applied to a practical case.
The exams consist of a questionnaire to be answer individually, without the help of any literature. Each questionnaire adheres to the concepts taught in the course. This exams have a maximum mark of six (6) points.

EXAMINATION RULES.

If there is any exam or continuous assessment within the scheduled period, a zero score will be considered.

BIBLIOGRAPHY

Basic: