Degree competences to which the subject contributes

Specific:
8200. The ability to apply knowledge of soil and rock mechanics to the study, design, construction and operation of foundations, cuts, fills, tunnels and other constructions over or through land, whatever its nature and state, and whatever the purpose of the work.
8228. Knowledge of and competence in the application of advanced structural design and calculations for structural analysis, based on knowledge and understanding of forces and their application to civil engineering structures. The ability to assess structural integrity.
8230. The ability to plan, dimension, construct and maintain hydraulic works.
8231. The ability to plan, evaluate and regulate the use of surface water and groundwater resources.
8233. Knowledge of and the ability to understand dynamic phenomena of the coastal ocean and atmosphere and respond to problems encountered in port and coastal areas, including the environmental impact of coastal interventions. The ability to analyse and plan maritime works.
8234. Knowledge of transport engineering and planning, transport types and functions, urban transport, management of public transport services, demand, costs, logistics, and financing of transport infrastructure and services.

Transversal:
8559. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding the mechanisms on which scientific research is based, as well as the mechanisms and instruments for transferring results among socio-economic agents involved in research, development and innovation processes.
8562. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
8563. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
250406 - ENGCOMP - Computational Engineering

Teaching methodology

Taught module delivery: fifteen weeks of teaching, coursework and self-study. Apart from the 4 hours per week in the classroom, self-study must last an average of 6 hours per week.

Learning objectives of the subject

Students will learn to design computational models for the mechanics of continuous media and for solving diagnostic problems encountered in engineering.

Upon completion of the course, students will be able to:

Develop computational models based on mechanics of continuous media and apply them to different areas of civil engineering, including soil and rock mechanics, structural analysis, hydrology and water resources, ports and coastal systems;

Develop discrete computational models and use them for network design in different areas of civil engineering, in particular transport, logistics, power distribution and infrastructure mapping;

Apply the uncertainty principle to data on the external actions and internal properties of systems;

Apply stochastic computational models and subject the results to statistical processing;

Use the results of computational models as the basis for design, analysis, optimisation and decision-making in civil engineering.

Computational engineering techniques for the modelling and solution of continuous equilibrium and evolution problems;

Application to structural engineering, geotechnical engineering, transport engineering, maritime engineering and environmental engineering; Continuous optimisation techniques (linear programming and nonlinear programming); Application to optimal design, parameter identification and resource allocation; Discrete optimisation and combinatorial optimisation techniques: Application to network design; Monte Carlo simulation: Application to decision-making in management and planning

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Theory classes:</th>
<th>17h 24m</th>
<th>11.60%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes:</td>
<td>8h 24m</td>
<td>5.60%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:</td>
<td>26h 13.2m</td>
<td>17.48%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>1h 58.8m</td>
<td>1.32%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>96h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
## Content

### 1.- Modelling with ODEs

<table>
<thead>
<tr>
<th>Learning time: 19h 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 11h 12m</td>
</tr>
</tbody>
</table>

**Description:**
- Boundary value problems in engineering
- The shooting method for boundary value problems
- Solution of two problems (fields: structural analysis / geotechnics)
- Adaptive numerical techniques
- Variable step: step adaptation based on error control
- The Runge-Kutta-Fehlberg 45 method (RKF45)
- Solution of a case study (field: structural analysis)

**Specific objectives:**
- To identify whether an engineering problem is an initial value problem or a boundary value problem
- To know the strategy to solve boundary value problems, based on iterations (shoots) of an associated initial value problem
- To model two case studies as boundary value problems: ODEs and boundary conditions
- To sketch the solution of the boundary value problems with the shooting method
- To be able to assess and control the quality of the numerical solution
- To know and to be able to apply the RKF45 method to initial value and boundary value problems
- To solve a boundary value problem with the RKF45 method (command ode45 in Matlab)
- To be able to choose the accuracy needed in a computation depending on the output of interest
## 2.- Modelling with PDEs

<table>
<thead>
<tr>
<th>Learning time: 43h 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 6h</td>
</tr>
<tr>
<td>Self study : 25h 12m</td>
</tr>
</tbody>
</table>

### Description:
- Solution of two problems (field: hydraulics / soil mechanics)
- Solution of a case study (field: structural analysis) with the FEM
- Eigenvalue problems in engineering
- Wave equation (vibrations, sea waves, sound), Eigenmodes and eigenfrequencies
- Standard and generalized eigenvalue problems
- Properties of the symmetric eigenvalue problem
- Methods of direct vector iteration and inverse vector iteration
- Solution of two case studies (field: structural dynamics / marine engineering)
- Diffusion and convection-diffusion problems in engineering
- Solution of evolution problems with the FEM

- Solution of a case study (field: environmental engineering)
- Nonlinear equilibrium problems in engineering
- Incremental-iterative strategy: the Newton-Raphson method
- Solution of a case study (field: structural analysis) with the FEM

### Specific objectives:
- To model two case studies as equilibrium problems: PDEs and boundary conditions
- To sketch the solution of equilibrium problems with the finite element method (FEM)
- To know the internal organization of a finite element code
- To be able to solve equilibrium problems with a finite element code
- To interpret results, to evaluate and control the quality of outputs of interest
- To know the most relevant eigenvalue problems in engineering
- To give a physical interpretation to eigenvectors (modes) and eigenvalues (frequencies)
- To know numerical techniques to determine the eigenvalues and eigenvectors of interest
- To be able to determine eigenfrequencies and eigenmodes of interest
- To understand the basic idea of modal analysis
- To identify whether a problem is an equilibrium or an evolution problem
- To know numerical techniques to treat time variation and convection
- To model a case study as a convection-diffusion problem
- To sketch its solution with the FEM
- To identify the different sources of nonlinearity in engineering
- To know numerical FEM techniques for nonlinear problems
- To model nonlinearity in a case study
- To be able to solve nonlinear problems with a finite element code
- To understand the large difference in complexity between linear and nonlinear problems

## Test #1

<table>
<thead>
<tr>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 2h 48m</td>
</tr>
</tbody>
</table>
### 3.- Optimization and simulation

#### Learning time:
- Theory classes: 14h
- Practical classes: 2h
- Laboratory classes: 4h
- Self study: 28h

#### Description:
- Introduction to optimization.
- Types of problems in engineering
  - Numerical techniques for continuous optimization problems without constraints
  - Models in engineering with unknown parameters
  - Nonlinear least-squares fitting from experimental measures
  - Numerical techniques: Newton, Levenberg-Marquardt
  - Heuristic techniques: genetic algorithms
  - Solution of a case study (field: soil mechanics / structural analysis)
- Optimization problems in engineering
  - Equality and inequality constraints
  - Optimization with equality constraints: Lagrange multipliers
  - Optimization with inequality constraints: active constraints, barrier functions, penalty functions
  - Solution of a case study
  - Linear programming problems in engineering
  - Linear goal function and linear constraints
  - The simplex method
  - Solution of a case study (field: resource allocation)
- Network problems in engineering
  - Exact and heuristic algorithms in discrete and combinatorial optimization
  - Simulation: Montecarlo method

#### Specific objectives:
Identify the different types of engineering problems: direct, optimal design, optimal identification and optimal control.

Establish the relationship between unconstrained minimization and the solution of nonlinear systems of equations.

To discuss whether a model is linear or nonlinear in its parameters.

To formulate parameter identification as a minimization problem. To know how to apply Levenberg-Marquardt method for parameter fitting.

To know the basic idea of genetic algorithms.

To model a case study as a problem of parameter identification.

To solve it with the Levenberg-Marquardt method.

To know the different types of optimization problems in engineering.

To understand the role played by the constraints.

To understand the different numerical treatment of problems with and without constraints.

To know the basic idea of numerical techniques for constraints.

To model a case study as a problem of constrained optimization.

To know different types of linear programming problems in engineering.

To understand the basic rules of the simplex method.

To model a resource allocation case study as a linear programming problem.

To solve it with the simplex method.

To formulate network design problems as discrete/combinatorial optimization problems.

To know the basic idea of the two types of techniques: exact and approximate.

Decision making.

---

**Test #2**

<table>
<thead>
<tr>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 2h 48m</td>
</tr>
</tbody>
</table>

**Course assignment**

<table>
<thead>
<tr>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 2h 48m</td>
</tr>
</tbody>
</table>
1. The module is graded with the following elements:
   * Class work (CW), to be carried out either individually or in teams.
   * A course project (CP), to be carried out in teams.
   * Two tests (T1 and T2), which are strictly individual.

2. Class work (CW) refers, among others, to:
   * Exercises in the classroom.
   * Assignments in the computer room.
   * Participation in class.

3. The course project (CP) is a small project in computational engineering, to be presented in two different formats: a report and a poster.

4. Tests T1 and T2 will cover all the topics presented from the beginning of the module.

5. Academic dishonesty (including, among others, communication during tests, plagiarism and falsification of results) will be severely punished, in accordance with current academic regulations: any such act will imply a final mark of 0 in the module.

6. The final mark for the module is obtained as

\[
\text{Mark} = (0.5 \times T1 + 0.5 \times T2)^{0.5} \times (0.5 \times CW + 0.5 \times CP)^{0.5}
\]

### Regulations for carrying out activities

1. Tests T1 and T2 are strictly individual.

2. Tests are closed-book. This means that:
   * Class notes, textbooks, solved problems or any other documents cannot be used.
   * Mobile phones, computers, tablets or similar electronic devices are not allowed.

3. Please bring to tests:
   * A calculator with no internet connection.
   * A watch (mobile phones not allowed!).
Bibliography

Basic:


Complementary:
