Degree competences to which the subject contributes

Specific:
- 8230. The ability to plan, dimension, construct and maintain hydraulic works.
- 8231. The ability to plan, evaluate and regulate the use of surface water and groundwater resources.

Transversal:
- 8559. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding the mechanisms on which scientific research is based, as well as the mechanisms and instruments for transferring results among socio-economic agents involved in research, development and innovation processes.
- 8560. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
- 8561. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

Teaching methodology

The course consists of 3 hours a week of classes in the regular classroom and the classroom informàtica. S uses material support through the virtual campus ATENEA: content, programming and evaluation activities of learning and bibliography.

Learning objectives of the subject

Specialization subject in which knowledge on specific competences is intensified.

Knowledge and skills at specialization level that permit the development and application of techniques and methodologies at advanced level.

Contents of specialization at master level related to research or innovation in the field of engineering.

The subject gives an overview of various aspects of River Dynamics and complements the knowledge previously acquired.
250431 - DINFLUV - River Dynamics

river engineering. We see a vision that encompasses ecological, numerical methods, descriptive and theoretical aspects. The course is taught by several professors that provide an overview of the current state of the art, tools and latest trends.

Study load

<table>
<thead>
<tr>
<th></th>
<th>Total learning time: 125h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>19h 30m</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>9h 45m</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>9h 45m</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>6h</td>
</tr>
<tr>
<td>Self study:</td>
<td>80h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15.60%</th>
<th>7.80%</th>
<th>7.80%</th>
<th>4.80%</th>
<th>64.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory classes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical classes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7h 11m</td>
<td>Description of the current state of rivers in developed countries and the problems that arise</td>
</tr>
<tr>
<td>Hydraulic Ecology</td>
<td>14h 23m</td>
<td>Approach to the ecological functioning of river. Seasonal patterns and evolution of the composition of the water</td>
</tr>
<tr>
<td>Modelling fluvial processes</td>
<td>28h 47m</td>
<td>Description of numerical methods if equations that describe fluvial processes beyond hydrodynamics: transport of sediments, pollutants, turbulence, wind, etc.. Using numerical simulation tools for the analysis of pollutants and sediment transport. Use of hydoinformatics for simulation of fluvial processes. Advanced hydrodynamic aspects: bridges, gates, culverts, wind, dam break, etc.. Models and theory sembílança reduced by fluvial dynamics studies. Case Studies</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>7h 11m</td>
<td>Analysis of the hydrodynamics of a Mediterranean reservoir along a year. Modeling tools</td>
</tr>
</tbody>
</table>
Impacts on rivers

Learning time: 14h 23m
- Theory classes: 3h
- Practical classes: 3h
- Self study : 8h 23m

Description:
Effects of infrastructures, mainly dams, in the dynamics of rivers
The temperature in rivers. Alterations due to dams, cooling facilities, etc.

Equilibrium and sediment transport

Learning time: 14h 23m
- Theory classes: 3h
- Laboratory classes: 3h
- Self study : 8h 23m

Description:
Aspects that influence the transversal and longitudinal equilibrium of a river. Expected evolution
Effects of nonuniform distribution of grain size on the sedimentary dynamics of a river

Other

Learning time: 3h 35m
- Theory classes: 1h 30m
- Self study : 2h 05m

Description:
A speaker on a topic of current interest on fluvial dynamics will be invited

Evaluation

Learning time: 3h 35m
- Laboratory classes: 1h 30m
- Self study : 2h 05m

Qualification system

The rating of the course is obtained from the continuous assessment marks which consist of courseworks and exams

Courseworks are volunteer. Each coursework will be considered as one or two additional questions of the final exam. If all the courseworks are done, they will represent 50% of the final grade.

Regulations for carrying out activities

The courseworks are done in groups of two students
Bibliography

Basic:

Complementary: