250433 - ENGPOROFF - Port and Offshore Engineering

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2015

Degree: MASTER'S DEGREE IN CIVIL ENGINEERING (PROFESSIONAL TRACK) (Syllabus 2012). (Teaching unit Optional)
MASTER'S DEGREE IN CIVIL ENGINEERING (RESEARCH TRACK) (Syllabus 2009). (Teaching unit Optional)

ECTS credits: 5

Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: JUAN PABLO SIERRA PEDRICO
Others: FRANCESC XAVIER GIRONELLA I COBOS, RAMON JUANOLA SUBIRANA, AGUSTIN SANCHEZ-ARCILLA CONEJO, JUAN PABLO SIERRA PEDRICO

Opening hours

Timetable: Schedule a consultation agreed with the teachers of the subject.

Degree competences to which the subject contributes

Specific:
8233. Knowledge of and the ability to understand dynamic phenomena of the coastal ocean and atmosphere and respond to problems encountered in port and coastal areas, including the environmental impact of coastal interventions. The ability to analyse and plan maritime works.

Teaching methodology

The course consists of 1,8 hours per week of classroom activity (large size group) and 0,8 hours weekly with half the students (medium size group).

The 1,8 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

The 0,8 hours in the medium size groups is devoted to solving practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

The rest of weekly hours devoted to laboratory practice.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program of learning and assessment activities conducted and literature.

Learning objectives of the subject

Specialization subject in which knowledge on specific competences is intensified.

Knowledge and skills at specialization level that permit the development and application of techniques and methodologies at advanced level.
Contents of specialization at master level related to research or innovation in the field of engineering.

TEAMWORK - Level 3: Managing and dynamic working groups, resolving their potential conflicts, evaluating the work done with other people and to evaluate the effectiveness of the team and the general presentation of the results.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Theory classes:</th>
<th>19h 30m</th>
<th>15.60%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes:</td>
<td>9h 45m</td>
<td>7.80%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:</td>
<td>9h 45m</td>
<td>7.80%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>6h</td>
<td>4.80%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
<tr>
<td>Content</td>
<td>Learning time: 4h 48m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to the port and port management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of boats. Types and classification of goods. Contracts for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>transportation and port organization.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describe some basic concepts of port and port activities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port planning. Types of plans. Estimation of capacity. A cost / benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable law.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describe the different types of plans available in the port planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>process.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port terminals</th>
<th>Learning time: 16h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Practical exercise on designing a port terminal.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Description of different types of port terminals.</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Being able to design, broadly speaking, a port terminal and its main</td>
<td></td>
</tr>
<tr>
<td>characteristics.</td>
<td></td>
</tr>
</tbody>
</table>
Environmental factors

<table>
<thead>
<tr>
<th>Learning time: 9h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Self study : 5h 36m</td>
</tr>
</tbody>
</table>

Description:
Description of environmental factors to consider in the design of port. Probabilistic design. Procedures for calculating outer harbor works. Practical application of methods of calculation of maritime structures.

Specific objectives:
The environmental review to consider in the design of port and Being able to apply different methods of calculation of maritime works.

Works indoors

<table>
<thead>
<tr>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Self study : 2h 48m</td>
</tr>
</tbody>
</table>

Description:
Types of works. Docks. Jetties. Dolfina

Specific objectives:
Understanding the different kinds and types of maritime works inside the ports.

Wave interaction / structure

<table>
<thead>
<tr>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 4h 11m</td>
</tr>
</tbody>
</table>

Description:
Run-up
Visit the Maritime Engineering Laboratory tests to monitor different processes of interaction of waves - structure.

Specific objectives:
To study the phenomena Observed in laboratory
The currents in the port engineering

Description:

Specific objectives:
Understanding the currents inside the port area and its influence on engineering port.

Learning time: 4h 48m
- Practical classes: 2h
- Self study: 2h 48m

Interaction port / sediment

Description:

Specific objectives:
To determine the influence of sediments in the harbor, which can generate problems and possible solutions.

Learning time: 2h 24m
- Practical classes: 1h
- Self study: 1h 24m

Water quality in ports

Description:
Types of pollutants. Sources of pollution. Processes involved in the dispersion of pollutants. Practice on water quality in port areas or

Specific objectives:
Learn about the most common pollutants in port waters and what the processes involved in its dispersal. Applying the theoretical knowledge acquired on water quality in ports.

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m
Climate Change

Learning time: 4h 48m
Theory classes: 2h
Self study: 2h 48m

Description:
Climate change. Effects of climate change on the sea. Impacts on ports.

Specific objectives:
Know what effects climate change may have on the sea, and the impact these can have effects on the ports.

Offshore Engineering

Learning time: 9h 36m
Theory classes: 2h
Practical classes: 2h
Self study: 5h 36m

Description:
History of offshore structures. Types of offshore structures. Artificial islands
Solicitations and responses. Probabilistic design. Design of fixed structures. Design of floating structures

Specific objectives:
Know that is a different structure and existing offshore.
Review, a practical way, the different calculation methods of OFFSHORE structures
Understanding the different aspects of the construction of offshore structures.

Marine renewable energies

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Description:
Estimation of energy resources. Systems for obtaining energy from tides, waves and currents
Analyze a case study of marine wind farm

Specific objectives:
Know that there are different systems for extracting energy from the sea

Evaluation

Learning time: 9h 36m
Laboratory classes: 4h
Self study: 5h 36m
250433 - ENGPOROFF - Port and Offshore Engineering

Qualification system

The mark of the course is obtained from the ratings of continuous assessment and their corresponding laboratories and/or classroom computers.

Continuous assessment consist in several activities, both individually and in group, of additive and training characteristics, carried out during the year (both in and out of the classroom).

The teachings of the laboratory grade is the average in such activities.

The evaluation tests consist of a part with questions about concepts associated with the learning objectives of the course with regard to knowledge or understanding, and a part with a set of application exercises.

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic:

Complementary:

Negro, V, y Varela O.. Diseño de diques rompeolas. Colegio de Ingenieros de Caminos, Canales y Puertos,

Negro, V., Varela, O., García, J. y López J. S.. Diseño de diques verticales. Colegio de Ingenieros de Caminos, Canales y Puertos,
