250666 - AIGABAST - Water of Provision

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2015
Degree: MASTER'S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Spanish, English

Teaching staff
Coordinator: JOAN GARCIA SERRANO
Others: JOAN GARCIA SERRANO, MARIANNA GARFI

Opening hours
Timetable: Send an email to the teacher

Teaching methodology
The course consists of 2 hours per week of teaching in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

Some classes will be dedicated to solve practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

Support material is provided using the virtual campus ATENEA.

Learning objectives of the subject
CE01 - Apply scientific concepts to environmental problems and their correlation with technological concepts.
CE08-Dimension unconventional systems and advanced treatment and raise their mass balance and energy.

Explore scientific concepts and technical principles of quality management of the receiving means, atmosphere, water and soil, and applied to problem solving.
Explore scientific concepts and technical principles of management and treatment of gaseous emissions, water supply, sewage and waste and remediation techniques for groundwater and contaminated soils.
Sized systems for the treatment of major pollutants vectors in specific sectors of activity.
Interprets rules, identifies goals, assesses technical alternatives proposed unconventional solutions and priority actions.

Water resources. Protection and management of resources.
Criteria and standards.
Legislation and regulations.
The urban water cycle supply: collection, purification, regulation, supply network.

Familiarizing students with the scientific basis and technical principles of the water supply. Special attention is paid on treatment processes aimed at improving water quality.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Theory classes: 15h</th>
<th>12.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
<tr>
<td>Content</td>
<td>Learning time:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Introduction on water quality, treatment</td>
<td>4h 48m</td>
<td></td>
</tr>
<tr>
<td>and supply</td>
<td>Theory classes: 2h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self study : 2h 48m</td>
<td></td>
</tr>
<tr>
<td>Description: Water quality parameters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National and European legislation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>regulations on the water cycle.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives: To know the basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>about drinking water quality, management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and treatment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water demand</td>
<td>2h 24m</td>
<td></td>
</tr>
<tr>
<td>Description: Water supply: basic concepts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water use. Water balance. Estimation of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water demand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives: To understand concepts related to water demand estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation-flocculation</td>
<td>12h</td>
<td></td>
</tr>
<tr>
<td>Description: Coagulation-flocculation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>basic principles, reagents, reactors used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and energy intake. Polyelectrolytes. Jar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>test. Design of coagulation-flocculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives: To understand concepts related to the process of coagulation-flocculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To develop the ability to identify and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solve problems related to coagulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and flocculation system design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gravity separation

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 9h 36m</th>
</tr>
</thead>
</table>
| Basic principles, types of sedimentation basins, settling velocity, sludge cleaning and removal. Hazen's postulates. Surface loading rate. Strategies to improve gravity separation. Design of sedimentation basins | Theory classes: 2h
Practical classes: 2h
Self study : 5h 36m |

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
</table>
| To understand concepts related to gravity separation.
To develop capacity to identify, formulate and solve problems related to the design of a gravity separation system. |

Filtration

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
</table>
Practical classes: 1h
Self study : 4h 11m |

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
</table>
| To understand concepts related to filtration.
To develop capacities to identify, formulate and solve problems for the calculation of pressure drop in filtration systems. |

Adsorption. Activated carbon filters

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
</table>
Practical classes: 1h
Self study : 2h 48m |

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
</table>
| To understand concepts related to activated carbon filtration.
To develop capacity to identify, formulate and solve problems for filter design and calculation of adsorption isotherms. |
Disinfection

Learning time: 12h
- Theory classes: 3h
- Practical classes: 2h
- Self study: 7h

Description:

Specific objectives:
To understand concepts related to water disinfection. To develop capacities to identify, formulate and solve problems for calculating the concentration / dose of disinfectant or contact time.

Sludge treatment and management

Learning time: 2h 24m
- Theory classes: 1h
- Self study: 1h 24m

Description:
Basic principles. Origin and composition of sludge generated in drinking water treatment plants. Pre-treatment, thickening and dewatering.

Specific objectives:
To understand concepts related to sludge treatment and management.

Softening

Learning time: 9h 36m
- Theory classes: 2h
- Practical classes: 2h
- Self study: 5h 36m

Description:

Specific objectives:
To understand concepts related to water softening. To develop capacity to identify, formulate and solve problems for calculating soda and lime needs.
Desalination

Learning time: 4h 48m
Specific objectives:
To understand concepts related to water desalination.
To develop the skills to identify guidelines for the proper management of brackish water in a desalination plant.

Catchment and pre-treatment

Learning time: 2h 24m
Description: Basic principles. Catchments of surface and groundwater. Main stages for pre-treatment.
Specific objectives:
To understand concepts related to water catchments and pre-treatment in a drinking water treatment plant.

Water distribution networks

Learning time: 2h 24m
Description: Basic principles. Types of networks, types of deposits. Applications. Managing a water supply system: basic concept.
Specific objectives:
To understand concepts related to water supply management and distribution networks.

Design of a drinking water treatment plant

Learning time: 4h 48m
Description: Design of a drinking water treatment plant.
Specific objectives:
To understand concepts related to the design of drinking water treatment plants.
The mark of the course is obtained from the continuous assessment. Continuous assessment consist in several activities, both individually and in group carried out during the year (both in and out of the classroom).

Evaluation tests include two exams with both theoretical and practical questions (40% + 60% of final mark) about concepts associated with the learning objectives of the course.

If student do not perform an evaluation activity in the scheduled period the mark will be zero.

Bibliography

Basic:

Complementary: