250669 - TRACAVAARI - Advanced Treatment of Industrial Wastewater

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 714 - ETP - Department of Textile and Paper Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: JOSE LUIS CORTINA PALLAS
Others: JOSE LUIS CORTINA PALLAS, MARTIN CRESPI ROSELL

Opening hours
Timetable: Any day from Monday to Friday after agreement on date/hour taking into account availability.
Any day Monday through Friday, by E-Mail

Degree competences to which the subject contributes
Specific:
13340. Apply scientific concepts to environmental problems and their correlation with technological concepts.
13347. Dimension unconventional systems and advanced treatment and raise their mass balance and energy.

Teaching methodology
The course consists of 3 hours per week of classes in the classroom (large group).

It lectures dedicated to a total of 22 hours in a big group, in which the teacher explains the concepts and basic raw materials.

Engaged a total of 8 hours (medium group), to solve problems with more interaction with students. Performed exercises to consolidate the learning objectives and general specifics.

The other 15 hours in total, 9 are devoted to lab work, and 6 h. to assisted works.

We employ support material in the form of detailed syllabus by the virtual campus Atenea content, programming and evaluation activities directed learning and literature.

Learning objectives of the subject
CE01 - Apply scientific concepts to environmental problems and their correlation with technological concepts.
CE08-Dimension unconventional systems and advanced treatment and raise their mass balance and energy.

Explore scientific concepts and technical principles of quality management of the receiving means, atmosphere, water and soil, and applied to problem solving.
Explore scientific concepts and technical principles of management and treatment of gaseous emissions, water supply, sewage and waste and remediation techniques for groundwater and contaminated soils.
Sized systems for the treatment of major pollutants vectors in specific sectors of activity.
Interprets rules, identifies goals, assesses technical alternatives proposed unconventional solutions and priority actions.

Characteristics of effluents from the main industrial sectors.
Advanced oxidation processes.
- Processes Fenton.
- Photocatalysis.
- Ozonation.
- Photochemical Processes.
- Wet oxidation.
- Processes coupled.
- Advanced Biological Processes.
- Membrane Bioreactors (MBR).
- Sequential biological reactors (SBR).
- Fixed bed reactors. Biocilindros and biodiscs. Mobile fixed bed.
- Granular anaerobic reactors fixed and expanded bed.
Combined systems.
New treatment techniques and use of sludge.
Control systems treatment plants.

The objectives of the course are to enable students to evaluate the quality of a wastewater depending on the characterization parameters.
Select and design the treatment process depending on the quality of wastewater, the destination of the treated water (landfill, recycling, reuse) of the rules and other conditions as the waste taxes.
Do the basic design of a wastewater treatment plant of Industrial effluents.
Manage the sludge produced in the sewage treatment plant.
Learn to manage wastewater treatment plants by physicochemical processes and by biological process.
Relate the major operating problems with the causes that produce, and learn the changes to be intruced in the purification plant to solve these problems.

<table>
<thead>
<tr>
<th>Study load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
</tr>
<tr>
<td>Hours large group: 15h</td>
</tr>
<tr>
<td>Hours medium group: 10h</td>
</tr>
<tr>
<td>Hours small group: 10h</td>
</tr>
<tr>
<td>Guided activities: 10h</td>
</tr>
<tr>
<td>Self study: 80h</td>
</tr>
</tbody>
</table>
250669 - TRACAVAARI - Advanced Treatment of Industrial Wastewater

Content

Unit 1: Regulations on industrial wastewater. Types of industrial waters and identification of the m

Learning time: 12h
- Theory classes: 2h
- Practical classes: 2h
- Laboratory classes: 1h
- Self study: 7h

Description:
Competent organisms: European Legislation, Spanish legislation, Autonomic Legislation, Local Administration Legislation.
Policy discharge to: Continental waters, Public System. Law for wastewater reusing. Calculation of discharge fees in Catalonia (DUCA)
General characteristics of municipal effluents.
Characteristics of the main industrial sectors: Textile and tanning industry * Paper Industry * Chemical Industry * Fine Chemical Industry * Food industry * Mining

Specific objectives:
- Identify the legislation applicable in each case for wastewater.
- Set discharge values for the main parameters of pollution of wastewaters.
- Perform calculations relating to the declaration of use and pollution charges of water (DUCA) existing Catalonia.
- Identify the main families of pollutants in wastewaters. Understanding the effect that different pollutants produced on the aquatic living organisms.
- Understand the concepts of biodegradability, acute and chronic toxicity, bioaccumulation, substances that consume oxygen.
- Knowing the most important characteristics of effluents from each sector industrial.
- Identify the degree of difficulty in treating industrial effluents to the limits required by law.
- Understanding the differences in composition that condition the treatment of domestic and industrial effluents.

Tema 2. Processes for the purification of industrial waters

Learning time: 12h
- Theory classes: 3h
- Practical classes: 2h
- Self study: 7h

Description:
Presentation of practical cases

Specific objectives:
- Know the fundamentals of the main wastewater treatment processes.
- Identify the type of contaminants that each process can remove best.
- Know the magnitude of the economic costs of each process.
- Identify the wastewater treatment processes best suited to each type of industrial effluent.
Learning to focus on solving complex industrial effluents
250669 - TRACAVAARI - Advanced Treatment of Industrial Wastewater

<table>
<thead>
<tr>
<th>Topic 3. Physical-chemical treatment processes</th>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>- Coagulant and floculant Products</td>
<td>Self study: 2h 48m</td>
</tr>
<tr>
<td>- Jar test test.</td>
<td></td>
</tr>
<tr>
<td>- Decanters.</td>
<td></td>
</tr>
<tr>
<td>- Flotators: DAF and CAF.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>- Design and evaluate the results of the Jar Test</td>
<td></td>
</tr>
<tr>
<td>- Do the basic design of a wastewater treatment coagulation-flocculation plant.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 4. Biological purification processes</th>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Foundamentals of biological processes.</td>
<td>Self study: 2h 48m</td>
</tr>
<tr>
<td>- Respirometric Tests.</td>
<td></td>
</tr>
<tr>
<td>- Aerobic processes.</td>
<td></td>
</tr>
<tr>
<td>- Activated sludge processes.</td>
<td></td>
</tr>
<tr>
<td>- Microorganisms.</td>
<td></td>
</tr>
<tr>
<td>- F/M ratio.</td>
<td></td>
</tr>
<tr>
<td>- Oxygen consumption.</td>
<td></td>
</tr>
<tr>
<td>- Nutrient Effect of pH and temperature.</td>
<td></td>
</tr>
<tr>
<td>- Design of a wastewater activated sludge treatment plant</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>- To know the different types of microorganisms involved in biological treatment and its role in the process.</td>
<td></td>
</tr>
<tr>
<td>- Knowing how biological processes properly removing nutrients.</td>
<td></td>
</tr>
<tr>
<td>- Specify the nomenclature and symbols used in the study of these processes.</td>
<td></td>
</tr>
<tr>
<td>- Identify and define correctly the influence of the parameters and factors that govern biological processes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 5. Advanced oxidation processes</th>
<th>Learning time: 9h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Fenton Processes.</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>- Fotocatálisis.</td>
<td>Self study: 5h 36m</td>
</tr>
<tr>
<td>- Ozonization.</td>
<td></td>
</tr>
<tr>
<td>- Fotochemical processes.</td>
<td></td>
</tr>
<tr>
<td>- Wet Oxidation Processes.</td>
<td></td>
</tr>
<tr>
<td>- Coupled processes.</td>
<td></td>
</tr>
<tr>
<td>- Applications</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>- Know the fundamentals of advanced oxidation processes.</td>
<td></td>
</tr>
<tr>
<td>- Identify the type of contaminants that each process can eliminate best.</td>
<td></td>
</tr>
<tr>
<td>- Know the magnitude of the economic costs of each treatment.</td>
<td></td>
</tr>
<tr>
<td>- Identify Process best suited to each type of industrial effluent.</td>
<td></td>
</tr>
</tbody>
</table>
Topic 6: Technologies for the reuse of industrial effluents: integration of membrane processes

Learning time: 19h 12m
- Theory classes: 2h
- Practical classes: 2h
- Laboratory classes: 4h
- Self study: 11h 12m

Description:
- Parameters that determine the reutilización: Aspects related with health. Technologies used in the recovery of water.
- Examples of reuse and recycling industry

Specific objectives:
- Explain the values and the main applications of the different processes of sludge management.
- Plan and solve material balance calculations of sludge treatment processes.
- Meet alternatives to recovery of sludge.
- Distinguish between reuse and recycling.
- Know the legal conditions for reusing efluentes.
- To be able to identify the most efficient technologies for reuse and recycling of efluentes.
- Design the most appropriate combination of processes to allow reuse or recycling according to effluent composition.

Topic 7: Systems for the monitoring of parameters of water quality in treatment processes

Learning time: 9h 36m
- Theory classes: 2h
- Laboratory classes: 2h
- Self study: 5h 36m

Description:
- Matèries inhibidores.

Specific objectives:
- Conèixer els paràmetres més importants en la caracterització d'un efluent,
- Identificar els errors que es poden produir en l'anàlisi i interpretació dels diferents paràmetres.
- Saber escollir les tècniques més adequades per a les determinacions analítiques.
Topic 8: Management of odor problems in industrial effluent treatment plants

Learning time: 12h
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 7h

Description:

Specific objectives:
- Understand the different methods of control of a physicochemical EDAR to optimize its performance and reduce costs.
- Understand the foundation of the different methods of control of an activated sludge WWTP.
- Perform calculations for the control of a WWTP from the experimental data of the sewage treatment plant.
- Identify the most common problems of operation and propose solutions. Know the main parameters of control.

Qualification system

The rating will be obtained from the continuous assessment marks and corresponding laboratory.

Continuous assessment consists of different activities, both individual and group training and additive nature, carried out during the year (in the classroom and outside of it).

The evaluation tests consist on issues associated with the concepts of the course learning objectives with regard to knowledge and understanding, and to one year of application.

Regulations for carrying out activities

Failure to perform a industrial visit or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.
Bibliography

Basic:

Varis. Manuales DWA.

Complementary:

Varis. Manuales IWA.