250672 - Modeling of Environmental Systems

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 736 - PE - Department of Engineering Design
Academic year: 2015
Degree: MASTER’S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2014). (Teaching unit Compulsory)
ECTS credits: 5
Teaching languages: Catalan, Spanish, English

Teaching staff
Coordinator: JOSE M. BALDASANO RECIO
Others: JOSE M. BALDASANO RECIO

Opening hours
Timetable: Constantly available via email: jose.baldasano@upc.edu

Teaching methodology

The course consists of 3 hours a week of classes in a classroom.
The 2 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.
The 1 hour is devoted to solving practical problems with greater interaction with the students. The objective of these practical work and exercises is to consolidate the general and specific learning objectives.
Support material in the form of detailed teaching plan is used by: content, program of learning and assessment activities conducted and literature.

Learning objectives of the subject

CE01 - Apply scientific concepts to environmental problems and their correlation with technological concepts.
CE02 - Analyze systems, environmental problems and their resolution using models and evaluate them.
CE03 - Acquire basic skills of laboratory work and identify the methods and instrumentation for the determination of parameters relevant to the analysis of environmental problems.

Very aware of the structure of land, water and artificial ecosystems and their interactions.
Meet the ecology and the cycling of elements.
Meet the major environmental problems globally.
Analyzes energy bases, stoichiometric and kinetic of different processes.
Modeling process and quantifies the performance and efficiency of systems.
Determines the basis of environmental hazards to human health and ecosystems.
Apply material balances and energy to environmental problems.
Interprets water-rock and water - air interactions using thermodynamic and kinetic methods.
Meet the pollutants and identify their impact.
Learn the basics of how the atmosphere and applies them in maintaining air quality.
Learn the basics of climate and discusses the implications of current climate change.
Conceptualized an environmental problem described by equations and poses analytical or numerical solution.
Identifies the codes you need to solve a problem as conceptualized.
Recognizes the spatial and temporal scales required to resolve the problem.
Is familiar with solutions to problems relating to dynamical systems.
Learn about simple solutions to problems advection-dispersion-reaction.
Recognizes the existence of uncertainty in the parameters of the equations and is capable of performing an uncertainty analysis and sensitivity.
Learn methods for information and action on various parameters or variables.
Understand that any measure inherently carries an associated error and is able to work with them.
It is critical to the values reported by others when the measurement method is not specified.
He has worked in the laboratory measurement of some parameters of environmental interest.

Introduction to numerical modeling process:
 Operation of natural processes.
 Defining and understanding the problem.
 The process of modeling.
 Stages in the development of a numerical model.
 The boundaries of a model.
 The transport equation.
 Spatial and temporal scales: Euler vs Lagrange.

Modelling of dynamic systems:
 Modeling of dynamic systems.
 Models of water quality in rivers and reservoirs.
 Air Quality Models: emissions.
 Models of dispersion of pollutants in air.
 Photochemical models.

Evaluation Model:
 Calibration / verification / validation model.
 Evaluation of results.
 Uncertainty analysis.

Introduction to numerical modelling process:
Operation of natural processes. Defining and understanding the problem.
The modelling process.
Stages in the development of a numerical model.
The limits of a model.
The transport equation.
Spatial and temporal scales: Euler vs. Lagrange.
Modeling dynamical systems:
Models of water quality in rivers and reservoirs.
Air quality models: emissions.
Models of dispersion of pollutants in air.
Photochemical models.
Evaluation models: calibration / verification / validation of the model.
Evaluation of the results.
Uncertainty analysis.
Study load

| Total learning time: 125h | Theory classes: 15h 12.00% | Practical classes: 10h 8.00% | Laboratory classes: 10h 8.00% | Guided activities: 10h 8.00% | Self study: 80h 64.00% |
Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Self study: 4h 11m</td>
</tr>
</tbody>
</table>

01 Introduction to numerical modeling process

Description:
- Operation of natural processes.
- Defining and understanding the problem.
- The modeling process.

02 Stages in the development of a numerical model

Description:
- Stages in the development of a model
- The limits of a model

03 The transport equation

Description:
- Concept of balance
- Continuity Equation
- Quantity Equation
- Conservation Movement
- Equation of Conservation of Energy
- Continuity equation of matter

Exercises and practical work
04 Spatial and temporal scales: Euler vs. Lagrange

Description:
The spatial scales
The time cycles
Eulerian vs Lagrangian Scheme
Exercises and practical work

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

05 Water Quality Models: rivers and reservoirs

Description:
Classification of water quality models (WQM)
Criteria for the classification of WQM
historical development
Dynamics and processes: cycles
Basic components of the MCA
Self-purification process
Simplified temperature model for rivers
Model QUAL2E
Reservoir temperature and hydrodynamics
Water quality model for a reservoir
Exercises and practical work

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m
250672 - Modeling of Environmental Systems

06 Air quality models: emissions

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Description:
- Types and models of emission inventory
- Activity factor, emission sources, typology
- Emission factors
- Emission sources of air pollutants
- Approach top-down vs bottom-up
- SNAP nomenclature groups
- Criteria breakdown
- Criteria of quality analysis inventory
- Speciation
- Exercises and practical work

07 Models of pollutant dispersion

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Description:
- Historical development
- Gaussian model
- Lagrangian model
- Box Model
- Eulerian model
- Exercises and practical work

08 Photochemical models

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Description:
- Ozone Formation
- Formation of secondary aerosols
- Chemical mechanisms
- Exercises and practical work
09 Evaluation of models: calibration, verification, validation

Description:
- Evaluation Process
- Calibration / Verification / Validation / Hindcast
- Exercises and practical work

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m

10 Performance: metrics

Description:
- Variables to evaluate
- Metrics
- Thresholds / Data Quality
- Categorical statistical
- Statistical Discrete
- Diagram Taylor
- Graphics
- Exercises and practical work

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m

11 Analysis of uncertainty

Description:
- Evaluation criteria
- Uncertainty Analysis
- Acceptance Criteria
- Sensitivity Analysis
- Model intercomparison

Learning time: 4h 48m
- Theory classes: 2h
- Self study: 2h 48m
Qualification system

The course grade will be obtained from continuous assessment scores and corresponding practical work. Continuous assessment consists in several activities, both individually and in group, of additive and formative characteristics, carried out during the course (in the classroom and beyond).

The evaluation tests consist of a part with basic issues and questions about concepts associated with the learning objectives of the course with in terms of knowledge or understanding concepts, and a set of exercises for understanding and application.

The teaching takes place according to the following criteria:

\[NF = r \times NE + (1-r) \times NAC \quad r = 0,5 \]
\[NAC = q \times NAEP + (1-q) \times NACET \quad q = 0,5 \]

NF: Final Note
NE: Exam Note
NAC: Note from continuous assessment
NAEP: Note teachings practical assessment (works, presentations, etc.)
NACET: Note continued evaluation of the theoretical teachings (test, etc.)

Regulations for carrying out activities

Failure to perform practical work, laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic: