250673 - Characterization, Management and Treatment of Waste

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 713 - EQ - Department of Chemical Engineering
Academic year: 2015
Degree: MASTER'S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2014). (Teaching unit Compulsory)
ECTS credits: 5
Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: VICENÇ MARTI GREGORIO
Others: IGNASI CASAS PONS, JOSE LUIS CORTINA PALLAS, VICENÇ MARTI GREGORIO

Opening hours

Timetable: Be agreed by e-mail addressed to professor

Teaching methodology

- Attending class favouring active participation (26%)
- Exercise attending class (12%)
- Autonomous learning (non-attending) (52%)
- Cooperative learning (non-attending) (10%)

These methodologies include a visit to a waste treatment installation, the development of works on waste management and treatment case studies and the organization of a workshop where the students will expose the work performed

Learning objectives of the subject

CE01 - Apply scientific concepts to environmental problems and their correlation with technological concepts.
CE04 - Identify, define and propose technological management and appropriate solution to an environmental problem.
CE05 - Dimension conventional treatment systems and raise their mass balance and energy.

Explore scientific concepts and technical principles of quality management of the receiving environments, atmosphere, water and soil.
Explore scientific concepts and technical principles of management and treatment of gaseous emissions, water supply, sewage and waste and remediation techniques for groundwater and contaminated soils.
Size systems for the treatment of major pollutants vectors.
Interprets rules, identifies goals, evaluates alternative techniques, proposes appropriate solutions and prioritize actions.

Production waste classification and producing sectors.
Thermal and chemical processes: incineration, gasification, pyrolysis, production of biodiesel.
Biochemical processes: aerobic decomposition, composting, anaerobic digestion, other biological transformation processes.
Treatment of sewage treatment plants: origin and characterization; flowchart for treatment, identification and characterization of processes, development of mass balances.
Controlled deposits: classification of deposits; considerations on the planning, design, operation and decommissioning; deposit as bioreactor, leachate and gas emissions.
Special waste. Inactivation processes, encapsulation and vitrification.
The subject is addressed to obtain knowledge and competences in the field of characterization, management and treatment of wastes, starting from the problems associated to each typology. Objectives, thus, include:

- Identification of each typology of wastes and the type of management to apply
- Identify and apply in an adequate way the main technologies of treatment, valorization or disposal of wastes
- To manage in a correct way the different types of wastes that could be generated in specific activities

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Theory classes: 15h</th>
<th>12.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 10h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
250673 - Characterization, Management and Treatment of Waste

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Theory classes:</th>
<th>Practical classes:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - INTRODUCTION AND FUNDAMENTALS</td>
<td>7h 11m</td>
<td>3h</td>
<td></td>
<td>4h 11m</td>
</tr>
<tr>
<td>Description:</td>
<td>Introduction of key concepts in the characterization, classification, management and treatment of wastes linked to environment and sustainability: reusing, recycling, recovery, minimization, valorization, treatment, disposal, type of wastes and their management attending to its origin (urban, industrial, agricultural, forestal and farm wastes, construction, mining, sanitary and specific) and impact on environment. Waste management plans and byproduct database.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Fundamentals Knowledge</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 - CLASSIFICATION AND CHARACTERIZATION OF WASTES	14h 23m	3h	3h	8h 23m
Description:	Characterization, classification (waste catalogue risk phrase), management and treatment of Industrial wastes and its legal framework will be considered. Analytical methods for classification and disposal of industrial waste and characterization of urban wastes for disposal will be exposed.			
Specific objectives:	Knowledge for classification of wastes and legal framework. See application examples.			

3 - PHYSICAL OR PHYSICO-CHEMICAL TREATMENT PROCESSES	14h 23m	3h	3h	8h 23m
Description:	Properties of contaminants linked to these treatments, description of fundamentals of mechanical separation, stripping, vapour extraction, adsorption, chemical oxidation, supercritical fluid extraction, membrane processes, stabilization and other.			
Specific objectives:	Knowledge of waste treatment. See application examples.			
4- BIOLOGICAL TREATMENT PROCESSES

Description:
Fundamentals of biological processes (electron acceptors and electron donors, Monod, microbiological kinetics) and the description of composting and anaerobic digestion plants from FORM, other biotretaments of contaminants (lagooning, leaching phase, in-situ treatment, fitotreatment and other.

Examples

Specific objectives:
Knowledge of waste treatment
See application examples

Learning time: 14h 23m
Theory classes: 3h
Practical classes: 3h
Self study: 8h 23m

5- THERMAL TREATMENT PROCESSES

Description:
Description of drying, combustion, incineration, pyrolysis, gasification, thermal desorption, vitrification, thermic plasma, and other techniques

Examples

Specific objectives:
Knowledge of waste treatment
See application examples

Learning time: 14h 23m
Theory classes: 3h
Practical classes: 3h
Self study: 8h 23m

6- ENERGETIC VALORIZATION OF WASTES

Description:
A description of the technical facilities and thermal energy production by cogeneration, biomass, biofuels, fuel cells, biogas and others.

Examples

Specific objectives:
Knowledge about management energy recovery
See application of examples

Learning time: 14h 23m
Theory classes: 3h
Practical classes: 3h
Self study: 8h 23m
250673 - Characterization, Management and Treatment of Waste

7-CONTROLLED DISPOSAL OF WASTES

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity on gas phase reactions and its developments in landfills.</td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Self study : 4h 11m</td>
</tr>
<tr>
<td>Simulation and application case studies. Activity evaluable</td>
<td></td>
</tr>
</tbody>
</table>

8-RADIOACTIVE WASTES

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals on radiation, wastes of low, medium and high activity, nuclear power plant impact, type of storage (ATC, AGP, low activity)</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Self study : 4h 11m</td>
</tr>
<tr>
<td>Knowledge management disposal</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

GLOBAL NOTE NT=0.1*NAC+0.1*NAC+ 0.2*NEP+ 0.6*NEP
NAC1: Continuous evaluation
NAC2: Case study work and exposition punctuation
NEP: Partial Exam Punctuation
NEF: Final Exam Punctuation

For the re-evaluation only NEF will be substituted, maintaining the rest of punctuations. Students NP (Not present) cannot attend to reevaluation exam.

Regulations for carrying out activities

The continuous evaluation exercises will be delivered in digital virtual campus and will be individual.

The case study work will be performed in group and will be delivered in digital virtual campus. A presentation of the works will be presented in the workshop (total time of workshop 1 hour).

Class notes, formulas and books could be used in EP and EF tests. An electronic calculator will be needed for these tests.
Bibliography

Basic:

Complementary: