250677 - Environmental Geology

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ENVIRONMENTAL ENGINEERING (Syllabus 2014). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: JOSE MOYA SANCHEZ
Others: CLÀUDIA ABANCÓ MARTÍNEZ DE ARENZANA, ALBERT FALQUES CASANOVAS, MARCEL HURLIMANN ZIEGLER, JOAN MARTÍNEZ BOFILL, JOSE MOYA SANCHEZ

Opening hours
Timetable: By appointment

Degree competences to which the subject contributes

Specific:
13340. Apply scientific concepts to environmental problems and their correlation with technological concepts.
13348. Perform, present and defend before a university tribunal an original exercise performed individually, consisting of a comprehensive study or project in the field of environmental engineering, in which the skills acquired in the lessons are synthesized by adopting the advances and developments in this field and many innovative ideas.

Transversal:
8560. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
8563. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

The course consists of 3 hours per week of classroom activity. Half of the time is for theory sessions and the other half is dedicated to solving of problems and the study of real cases.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program of learning and assessment activities conducted and literature.

Learning objectives of the subject

CE01 - Apply scientific concepts to environmental problems and their correlation with technological concepts. CE08-Dimension unconventional systems and advanced treatment and raise their mass balance and energy.

Explore scientific concepts and technical principles of quality management of the receiving means, atmosphere, water and soil, and applied to problem solving.
Explore scientific concepts and technical principles of management and treatment of gaseous emissions, water supply,
sewage and waste and remediation techniques for groundwater and contaminated soils. Sized systems for the treatment of major pollutants vectors in specific sectors of activity. Interprets rules, identifies goals, assesses technical alternatives proposed unconventional solutions and priority actions.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 19h 30m</th>
<th>15.60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>9h 45m</td>
<td>7.80%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>9h 45m</td>
<td>7.80%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>6h</td>
<td>4.80%</td>
</tr>
<tr>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Content

Topic 1. Organization of natural systems

Description:
Description of the Earth system and its components and interactions
The carbon cycle

Specific objectives:
- Provide an integrating vision of the various subsystems that make up our planet, the intense interaction between them and the results of the interactions
- Identify in a practical and quantitative way the different components of the cycle of an essential nutrient and its relative weight. Illustrate the intimate interdependence of the various terrestrial subsystems.

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m

Topic 2. The pedologic system

Description:
The alteration of rocks and soil formation. Fertility. Degradation, erosion and pollution. Desertification
Field practice on identification of pedogenic soils

Specific objectives:
- To discuss the characteristics of pedogenic soils, the processes of formation and degradation, as well as their significance
- Exercise of characterization of a pedogenic soil and identification of its degree of development

Learning time: 7h 11m
- Theory classes: 1h 30m
- Laboratory classes: 1h 30m
- Self study: 4h 11m

Item 3. The surface and underground water system

Description:
The hydrological cycle. Aquifers. Water balance. Vulnerability and protection
Water balance of a river basin

Specific objectives:
- Introduce the evaluation of water resources and provide criteria for their protection
- Exercise to quantify the available water resources on a river basin

Learning time: 14h 23m
- Theory classes: 3h
- Practical classes: 3h
- Self study: 8h 23m
Topic 4. In situ reconnaissance

Learning time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Description:
Description of the field reconnaissance techniques for the evaluation of environmental impacts. Application of techniques to a real case.

Topic 5. Natural Disasters

Learning time: 21h 36m
Theory classes: 3h
Practical classes: 3h
Laboratory classes: 3h
Self study: 12h 36m

Description:

Specific objectives:
Introduce mechanisms that give rise to natural hazards and assessing their impact
Practice of susceptibility and hazard assessment
Develop criteria for evaluation of dangerous landslides.

Topic 6. Environmental geochemistry and mineralogy

Learning time: 7h 11m
Theory classes: 2h
Laboratory classes: 1h
Self study: 4h 11m

Description:
Description of real cases of geochemical and mineralogical contamination. Analysis of a real case of geochemical contamination.

Specific objectives:
Knowledge of pollution processes linked to geological materials
Exercise for identifying and evaluating a real problem of contamination.
250677 - Environmental Geology

<table>
<thead>
<tr>
<th>Topic 7. Exploitation of mineral resources. Impact and restoration</th>
<th>Learning time: 4h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
<td></td>
</tr>
<tr>
<td>Self study : 2h 48m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Use and resource extraction. Spills and waste dumps. Restoration. Waste storage</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Analysis of impacts associated with the extraction of mineral resources</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 8. Management of fluvial systems and water reservoirs</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 1h</td>
<td></td>
</tr>
<tr>
<td>Self study : 4h 11m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Climate and global change: impact and adaptation strategies. Sustainable management. Discussion of the need for sustainable management of river areas and the possible alternatives of a real case</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Presentation of future challenges and alternatives for managing the of the fluvial systems</td>
<td></td>
</tr>
<tr>
<td>Identification of the problems derived from the non-sustainable management of river systems and analysis of alternatives</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 9. The environmental project on civil infrastructures</th>
<th>Learning time: 7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h 30m</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 1h 30m</td>
<td></td>
</tr>
<tr>
<td>Self study : 4h 11m</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Impact on the physical environment of public works and urban development (road works, foundations, tunnels, dams and reservoirs). Physical alteration of natural systems</td>
<td></td>
</tr>
<tr>
<td>Impact exercise on assessment of the physical environment due to the construction of a road work</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Identify the impacts of different works on the physical environment</td>
<td></td>
</tr>
<tr>
<td>Assess and quantify the environmental impact</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Directed work. evaluation</th>
<th>Learning time: 9h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 4h</td>
<td></td>
</tr>
<tr>
<td>Self study : 5h 36m</td>
<td></td>
</tr>
</tbody>
</table>
Qualification system

The mark of the course is obtained from the ratings of continuous assessment on classroom and form the qualification of deliverables for scheduled practical activities.

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic:
