250803 - Modelling of Flow and Transport in Porous Media

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN GEOTECHNICAL ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
ECTS credits: 5
Teaching languages: Spanish, English

Teaching staff
Coordinator: DANIEL FERNANDEZ GARCIA
Others: DANIEL FERNANDEZ GARCIA, MAARTEN WILLEM SAALTINK

Degree competences to which the subject contributes

Specific:
13308. To conceive soils and rocks as porous media governed by Solid and Fluid Mechanics.
13309. To characterize the geological environment and its interaction with civil works.
13310. To interpret laboratory tests and field observations so as to identify the mechanisms responsible for soil response. To propose laboratory testing programmes.
13311. To formulate and implement Finite Element and Finite Differences numerical models with the objective to analyze the processes that govern ground response, to interpret field information and to predict soil response.

General:
13300. To apply advanced knowledge in sciences and technology to the professional or research practice.
13305. To conceive Geo-engineering as a multi-disciplinary field that includes relevant aspects from geology, seismology, hydrogeology, geotechnical and earthquake engineering, geomechanics, physics of porous media, geophysics, geomatics, natural hazard, energy and climate interactions.
13306. To promote innovation for the development of methodology, analyses and solutions in Geo-engineering.
13307. To tackle and solve advanced mathematical problems in engineering from the drafting of the problem to the development of formulation and further implementation in computer programs. Particularly, to formulate, code and apply analytical and numerical advanced computational tools to project calculations in order to plan and manage them as well as to interpret results in the context of Geo-engineering and Mining engineering.

Teaching methodology

The course consists of 3 hours per week of classroom sessions in the classroom. Class hours are divided into theoretical hours which teachers exposed the basic concepts and materials of the subject; Class hours presenting examples and doing exercises; Hours and modeling workshops where the teacher presents a specific software for the modeling of flow and transport in porous media. Support material is used in the form of detailed teaching plan using the virtual campus ATENEA: content, programming and evaluation activities directed learning and literature.

Learning objectives of the subject

To conceive soils and rocks as porous media governed by Solid and Fluid Mechanics.
To characterize the geological environment and its interaction with civil works.
To interpret laboratory tests and field observations so as to identify the mechanisms responsible for soil response. To propose laboratory testing programmes.
250803 - Modelling of Flow and Transport in Porous Media

To formulate and implement Finite Element and Finite Differences numerical models with the objective to analyze the processes that govern ground response, to interpret field information and to predict soil response.

* To apply the theoretical concepts of flow and transportation on porous media.
* To characterize soils.
* To apply the theoretical concepts of deformation and flow in soils.
* To characterize rock massifs and their discontinuities.
* To apply the concepts of mechanical stability and flow in cracks.
* To apply the theoretical problems of elastic and electromagnetic wave propagation in soils and rocks.
* To interpret and process wave signals.

- General process to model natural phenomena.
- Basic formulation of hydrogeological problems.
- Formulation of the flow equation.
- Resolution of the flow equation by means of numerical methods.
- Methodology to model aquifers flow.
- Formulation of the transport equation.
- Numerical resolution of the transport equation and its difficulties.
- Real cases.

| Study load |
|------------------|------------------|------------------|
| **Total learning time:** 125h | Theory classes: 19h 30m 15.60% |
| Practical classes: 9h 45m 7.80% |
| Laboratory classes: 9h 45m 7.80% |
| Guided activities: 6h 4.80% |
| Self study: 80h 64.00% |
250803 - Modelling of Flow and Transport in Porous Media

Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time:</th>
<th>Description:</th>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4h 48m</td>
<td>Theory classes: 2h</td>
<td>Introduction to basics review</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self study : 2h 48m</td>
<td></td>
</tr>
<tr>
<td>Flow models</td>
<td>33h 36m</td>
<td>Theory classes: 10h</td>
<td>Description of the finite difference method to solve the flow equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical classes: 4h</td>
<td>Presentation of the finite element method to solve the equation of flow in porous media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self study : 19h 36m</td>
<td>Solving exercises in class</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learned finite differences to solve the flow equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learn the finite element method to solve the equation of flow in porous media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Consolidate knowledge through exercises</td>
</tr>
<tr>
<td>Transport Models</td>
<td>16h 48m</td>
<td>Theory classes: 7h</td>
<td>Solving the transport equation through Eulerian methods based on finite differences and finite elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self study : 9h 48m</td>
<td>Solving the transport equation with Lagrangian methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learn how to solve the equation Eulerian transport methods based on finite differences and finite elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learn how to solve the transport equation with Lagrangian methods</td>
</tr>
<tr>
<td>Section</td>
<td>Learning time:</td>
<td>Description:</td>
<td>Specific objectives:</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Inverse problem | 10h 48m | Nonlinear regression. Automatic calibration for solving the flow and transport equation | Learn automatic calibration
Learn statistics associated with the automatic calibration |
| Nonlinear Problems | 8h 24m | Unconfined aquifers, unsaturated zone
Nonlinear problems in the transport equation | Learn problem solving nonlinear
Learn solving nonlinear problems |
| Workshops modeling | 12h | Workshops
Consolidate knowledge | |
| Review | 7h 11m | Labortory classes: 3h
Self study : 4h 11m |
Qualification system

The mark of the course is obtained from the ratings of continuous assessment and their corresponding laboratories and/or classroom computers.

Continuous assessment consist in several activities, both individually and in group, of additive and training characteristics, carried out during the year (both in and out of the classroom).

The teachings of the laboratory grade is the average in such activities.

The evaluation tests consist of a part with questions about concepts associated with the learning objectives of the course with regard to knowledge or understanding, and a part with a set of application exercises.

The final mark (NF) is the weighted average of homework (PR), exams (EX) and the final course (TR), such that:

\[\text{PR NF} = 0.1 \times \text{PR} + 0.6 \times \text{EX} + 0.3 \times \text{TR} \]

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic:

