Course guides
250811 - 250811 - Foundations and Earth Retaining Structures

Unit in charge: Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.
Degree: MASTER’S DEGREE IN GEOTECHNICAL ENGINEERING (Syllabus 2015). (Optional subject).
Academic year: 2020 ECTS Credits: 5.0 Languages: Spanish

LECTURER
Coordinating lecturer: JEAN VAUNAT
Others: MARCOS ARROYO ALVAREZ DE TOLEDO, ALESSANDRA DI MARIANO SIMONCINI, LAURA GONZÁLEZ BLANCO, JEAN VAUNAT

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
13312. To analyze, discriminate and integrate geological and geotechnical information in studies and projects.
13313. To apply the knowledge on soil and rock mechanics to the development of the study, design, construction and exploitation of foundations, excavations, embankments, tunnels and other constructions on or through the soils, regardless of their nature and state or the finality of the works under study. (Specific competence of the specializations in Geotechnical Engineering and Earthquake Engineering and Geophysics).

Generical:
13300. To apply advanced knowledge in sciences and technology to the professional or research practice.
13301. To lead, coordinate and develop integrated projects in Geo-Engineering.
13302. To identify and design solutions for geo-engineering problems within ethical, social and legislative frameworks.
13303. To evaluate the impact of Geo-engineering on environment, sustainable social development and the significance of working within reliable and conscientious profesional environment.
13304. To incorporate new technologies and advanced tools in Geo-engineering into professional and research activities.
13305. To conceive Geo-engineering as a multi-disciplinary field that includes relevant aspects from geology, sismology, hydrogeology, geotechnical and earthquake engineering, geomechanics, physics of porous media, geophysics, geomatics, natural hazard, energy and climate interactions.
13306. To promote innovation for the development of methodology, analyses and solutions in Geo-engineering
13307. To tackle and solve advanced mathematical problems in engineering from the drafting of the problem to the development of formulation and further implementation in computer programs. Particularly, to formulate, code and apply analytical and numerical advanced computational tools to project calculations in order to plan and manage them as well as to interpret results in the context of Geo-engineering and Mining engineering.
TEACHING METHODOLOGY

The course consists of 1.7 hours per week of classroom activity (large size group) and 0.7 hours weekly with half the students (medium size group).

The 1.7 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

The 0.7 hours in the medium size groups is devoted to solving practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

The rest of weekly hours devoted to laboratory practice.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program of learning and assessment activities conducted and literature.

LEARNING OBJECTIVES OF THE SUBJECT

To conceive soils and rocks as porous media governed by Solid and Fluid Mechanics.

To characterize the geological environment and its interaction with civil works.

To interpret laboratory tests and field observations so as to identify the mechanisms responsible for soil response. To propose testing programmes.

To formulate and implement Finite Element and Finite Differences numerical models with the objective to analyze the processes that govern ground response, to interpret field information and to predict soil response.

To analyze, discriminate and integrate geological and geotechnical information in studies and projects.

To apply the knowledge on soil and rock mechanics to the development of the study, design, construction and exploitation of foundations, excavations, embankments, tunnels and other constructions on or through the soils, regardless of their nature and state or the finality of the works under study (Specific competence of the specialties in Geotechnical Engineering and Earthquake Engineering and Geophysics).

To analyze, from the perspective of an expert, cases of failure in Geotechnical Engineering. To report the evidences, identify the mechanisms responsible for the failure and verify using back- analysis models. Eventually provide solutions to risk reduction. (Specific competence of the specialization in Geotechnical Engineering).

To realize studies of land management and urban spaces, including construction of tunnels and other underground infrastructures. (Specific competence of the specialization in Geotechnical Engineering).

To use, in a discriminate manner, commercial software for numerical calculations in order to design and eventually monitor geotechnical structures. (Specific competence of the specialization in Geotechnical Engineering).

- To apply limit analysis concepts to the calculation of limit load in soils.
- To interpret the behavior of soils with regards to critical state mechanics.
- To interpret the behavior of compacted soils with regards to the mechanics of unsaturated soils.
- To suggest a geotechnical field survey campaign.
- To suggest a laboratory research program.
- To critically analyze laboratory and field test results and to obtain soil parameters.
- To calculate shallow and deep foundations.
- To calculate earth contention structures.
- To calculate tunnels in rocks and soils.
- To calculate preloading settlements.
- To use numerical models to calculate soil-structure interaction problems.
- To analyze fracture cases from the point of view of an expert.

- Ground investigation.
 - Shallow foundations.
 - Deep foundations.
 - Calculation of earth pressure.
 - Rigid containment structures.
 - Diaphragm walls.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>9,8</td>
<td>7.83</td>
</tr>
<tr>
<td>Hours large group</td>
<td>19,5</td>
<td>15.59</td>
</tr>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>63.95</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>9,8</td>
<td>7.83</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Total learning time: 125.1 h

CONTENTS

Introduction

Description:
Introduction to the course

Full-or-part-time: 2h 24m
Theory classes: 1h
Self study: 1h 24m

Site investigation

Description:
Preliminary documentation
Density and depth of investigation
Surface investigation
Deep investigation
Trenches and boreholes
Piezometric observations
Sampling
Soil properties and parameters
Laboratory tests

Full-or-part-time: 7h 11m
Theory classes: 3h
Self study: 4h 11m
In situ tests

Description:
Standard penetration test (SPT)
Cone penetration test
Dynamic penetration test
Vane test
Pressuremeter test
Plate load test
Seismic tests
Permeability tests
In situ testing exercises

Full-or-part-time: 12h
Theory classes: 3h
Practical classes: 2h
Self study : 7h

Shallow Foundations

Description:
Introduction
Bearing capacity
Settlements
Design criteria
Factor of safety against failure
Admissible settlements
Design of a shallow foundation empirical
Allowable pressure
In situ tests

Full-or-part-time: 4h 48m
Theory classes: 2h
Self study : 2h 48m
Deep foundations

Description:
- Preliminaries
- Classification
- Methods of pile construction
- Mechanisms of resistance of piles
- Bearing capacity of an isolated pile
- Tip resistance
- Shaft resistance
- Special cases: gravel, rock
- Bearing capacity of a pile group
- Settlements of a single pile
- Settlements of a pile group
- Piles subjected to lateral loads
- Negative friction
- Foundation exercises

Full-or-part-time: 14h 23m
- Theory classes: 4h
- Practical classes: 2h
- Self study: 8h 23m

Test

Full-or-part-time: 14h 23m
- Laboratory classes: 6h
- Self study: 8h 23m

Calculation of earth pressures

Description:
- Coefficient of earth pressure at rest
- Rankine active and passive states
- Limit equilibrium
- Method of Coulomb
- Additional earth pressures due to surcharges
- Earth pressure exercises

Full-or-part-time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m
Gravity structures

Description:
General aspects
Gravity walls
Rockfill walls
Cantilever wall
Gravity structures exercises

Full-or-part-time: 14h 23m
Theory classes: 4h
Practical classes: 2h
Self study: 8h 23m

Reinforced earth

Description:
Reinforced Earth
Green Walls
Bolts
Anchors
Reinforced earth exercises

Full-or-part-time: 7h 11m
Theory classes: 2h
Practical classes: 1h
Self study: 4h 11m

Diaphragm walls

Description:
Introduction
Construction aspects
Distributions of pressure on diaphragm walls
Drainage around an excavation
Propping
Surface settlements
Diaphragm wall exercises

Full-or-part-time: 9h 36m
Theory classes: 2h
Practical classes: 2h
Self study: 5h 36m
GRADING SYSTEM

The mark of the course is obtained from the ratings of continuous assessment and their corresponding laboratories and/or classroom computers.

Continuous assessment consist in several activities, both individually and in group, of additive and training characteristics, carried out during the year (both in and out of the classroom).

The teachings of the laboratory grade is the average in such activities.

The evaluation tests consist of a part with questions about concepts associated with the learning objectives of the course with regard to knowledge or understanding, and a part with a set of application exercises.

EXAMINATION RULES.

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

BIBLIOGRAPHY

Basic: