250952 - MECMEDCON - Continuum Mechanics

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: ERASMUS MUNDUS MASTER'S DEGREE IN COMPUTATIONAL MECHANICS (Syllabus 2013).
          (Teaching unit Compulsory)
          MASTER'S DEGREE IN NUMERICAL METHODS IN ENGINEERING (Syllabus 2012). (Teaching unit Compulsory)
          MASTER'S DEGREE IN STRUCTURAL AND CONSTRUCTION ENGINEERING (Syllabus 2009).
          (Teaching unit Optional)
          MASTER'S DEGREE IN STRUCTURAL AND CONSTRUCTION ENGINEERING (Syllabus 2015).
          (Teaching unit Optional)
ECTS credits: 5  Teaching languages: English

Teaching staff
Coordinator: CARLOS AGELET DE SARACIBAR BOSCH
Others: CARLOS AGELET DE SARACIBAR BOSCH

Opening hours
Timetable: Negotiable

Degree competences to which the subject contributes

Specific:
8378. Practical numerical modeling skills. Ability to acquire knowledge on advanced numerical modeling applied to
different areas of engineering such as: civil or environmental engineering or mechanical and aerospace engineering or
bioengineering or Nanoeengineering and naval and marine engineering, etc..
8379. Knowledge of the state of the art in numerical algorithms. Ability to catch up on the latest technologies for
solving numerical problems in engineering and applied sciences.
8380. Materials modeling skills. Ability to acquire knowledge on modern physical models of the science of materials
(advanced constitutive models) in solid and fluid mechanics.
8382. Experience in numerical simulations. Acquisition of fluency in modern numerical simulation tools and their
application to multidisciplinary problems engineering and applied sciences.
8383. Interpretation of numerical models. Understanding the applicability and limitations of the various computational
techniques.
8384. Experience in programming calculation methods. Ability to acquire training in the development and use of
existing computational programs as well as pre and post-processors, knowledge of programming languages ??and ??of
standard calculation libraries.
This is a complete course in nonlinear continuum mechanics for engineers. It carries out a deep review of the fundamental concepts, including motion, deformations, strains, stresses, governing laws of balance, variational principles and an introduction to the Mechanics of solids and of fluids.

* The students will be able to understand and assimilate the foundations of the mechanics of solids, identifying the most important aspects of material modeling, and dissipation mechanisms associated with nonlinear behaviour. * They have to be able to interpret the physical meaning of the material properties and properly identify the numerical methods for the solution of problems of solid mechanics, with its application to elasticity, and learn the foundations of fluid mechanics. * The students will develop practical skills to work with tensors and formulate and develop analysis of diverse problems of solids in engineering.

* Tensor algebra (definitions, invariants, gradients, divergences, rotational, integral theorems).
* Kinetics: deformation and strain (strain tensors).
* Small deformations and compatibility.
* Stress tensors.
* Governing laws
* Constitutive Laws (laws of thermodynamics, deformation energy, elasticity)
* Boundary value problems in linear elasticity (2D)
* Introduction to plasticity (Von Mises, Tresca, Mohr, Coulomb)
* Ideal and potential flows.
* Viscous incompressible flow (with an introduction to turbulent flow)
* Learning resources:
o Currie,

The main objectives of the course are the presentation, understanding and mastery of the basic fundamentals of nonlinear continuum mechanics and their application to solid mechanics and fluid mechanics.
### Study load

<table>
<thead>
<tr>
<th>Study type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total learning time:</strong></td>
<td>125h</td>
<td></td>
</tr>
<tr>
<td>Theory classes:</td>
<td>10h</td>
<td>8.00%</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>15h</td>
<td>12.00%</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>15h</td>
<td>12.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>5h</td>
<td>4.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
In this chapter, the basic notation used in the course and a comprehensive review of the main concepts of tensor algebra is introduced.

Contents:
- Introduction
- Vector Algebra
- Tensor Algebra
- Higher-order tensors
- Differential Operators
- Integral Theorems

Specific objectives:
The objectives are to introduce the tensor notation to be used in the course and do a review of tensor algebra.
# Motion

<table>
<thead>
<tr>
<th>Learning time: 10h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h 30m</td>
</tr>
<tr>
<td>Practical classes: 1h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 1h 30m</td>
</tr>
<tr>
<td>Self study: 6h 18m</td>
</tr>
</tbody>
</table>

## Description:
This topic describes the main assumptions of the Mechanics of Continuous Media and the main concepts of non-linear kinematics of particles are introduced: equation of motion, description of materials and spatial properties of the continuum derived materials, space and convective, displacement, velocity, acceleration, trajectories, streamlines, materials and spatial surfaces and volumes.

## Contents:
- Definition of Continuous Medium
- Motion equation
- Material and spatial descriptions
- Material and spatial time derivatives
- Displacement
- Velocity
- Accelerations
- Trajectories
- Streamlines
- Material and spatial surface
- Material and spatial volume

## Problems

### Specific objectives:
The aim is to introduce the main concepts of nonlinear kinematics of particles.
Strains

<table>
<thead>
<tr>
<th>Learning time: 16h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study : 9h 48m</td>
</tr>
</tbody>
</table>

Description:
In this chapter the main aspects of nonlinear kinematics of deformation of a continuum medium are introduced.

Contents:
- Deformation gradient tensor
- Material and spatial gradient of displacements tensors
- Green-Lagrange and Almansi strain tensors
- Volumetric Strain
- Variation of the area
- Polar decomposition of the deformation gradient tensor
- Stretching
- Variation of angles
- Spatial gradient of velocity tensor
- Deformation rate and rotation rate tensors
- Material time derivative of different tensors

Problems

Specific objectives:
The aim is to introduce the main concepts and tension associated with the deformation of a continuous medium.
## Infinitesimal strains

### Description:
This topic hypothesis under infinitesimal strains are introduced and the corresponding simplified expressions used in the context of infinitesimal deformations are obtained. The concept of compatibility equations for the infinitesimal strain tensor is also introduced.

### Contents:
- Assumptions of the theory of infinitesimal deformations
- Tensor displacement gradient
- Infinitesimal strain tensor
- Variation of infinitesimal volume
- Polar decomposition
- Stretching
- Variation of angles
- Matrix notation
- Compatibility Equations

### Specific objectives:
The main objectives are to introduce the hypothesis of infinitesimal deformation theory and particularizing tensors introduced in the nonlinear case, the case of infinitesimal deformations.

## Stresses

### Description:
This topic describes the concepts of forces and stresses on a continuous medium.

### Contents:
- Body forces and surface forces
- Cauchy's theorems
- Cauchy stress tensors and first Piola-Kirchhoff stress tensor
- Piola transformation and Piola identity
- Kirchhoff and second Piola-Kirchhoff stress tensors

### Specific objectives:
The main objectives are to introduce the concepts of forces and stress tensors.
## Balance/conservation equations

<table>
<thead>
<tr>
<th><strong>Learning time:</strong> 21h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 12h 36m</td>
</tr>
</tbody>
</table>

### Description:
This topic describes the basic principles of conservation / balance of a continuous medium are introduced, global / local shape and material / spatial. The ultimate goal is to obtain the governing equations of a problem of continuum mechanics.

### Contents:
- Basic equations of conservation / balance
- Conservation of Mass
- Convective flux of a property
- Lemma of Reynols
- Reynolds Transport Theorem
- Balance of momentum
- Balance of moment of momentum
- Thermodynamics
- First law of thermodynamics. Energy Balance
- Second Law of Thermodynamics
- Thermodynamic Processes
- Governing Equations
- Uncoupled mechanical and thermal problems

### Specific objectives:
The main objectives are to introduce the basic principles of conservation / balance and get in space and equipment locally, the governing equations of a problem in continuum mechanics.
## Linear elasticity

**Description:**
This topic describes the main concepts of linear elasticity are presented, leading to pose and solve the linear elastic problems.

**Contents:**
- Linear elastic model
- Linear Elastic Problem
- Solution of linear elastic problem
- Orthogonal curvilinear coordinates

**Specific objectives:**
The main objectives are to introduce the constitutive equations for linear elastic model and come to formulate and solve the linear elastic problem.

### Learning time: 14h 23m
- Theory classes: 1h
- Practical classes: 3h
- Laboratory classes: 2h
- Self study: 8h 23m

## Fluid Mechanics

**Description:**
This chapter introduces additional concepts needed to formulate a generic problem in fluid mechanics.

**Contents:**
- Introduction
- Constitutive Equations
- Governing Equations

**Specific objectives:**
The main objective is to introduce the constitutive equations for a fluid mechanics problem.

### Learning time: 2h 24m
- Theory classes: 1h
- Self study: 1h 24m
Newtonian fluids

<table>
<thead>
<tr>
<th>Learning time: 10h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Practical classes: 1h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 6h 18m</td>
</tr>
</tbody>
</table>

Description:
In this chapter, the constitutive equation for a Newtonian fluid is introduced and the formulation and solution of a fluid dynamics problem for Newtonian fluids is shown.

Content:
- Constitutive equation
- Governing Equations
- Boundary Conditions
- Orthogonal curvilinear coordinates

Problem

Specific objectives:
The main objectives are to introduce the constitutive equations for a Newtonian fluid and get to pose and solve a problem in fluid mechanics for a Newtonian fluid.

Qualification system

The course grade is obtained from the ratings of the continuous assessment (30%) and final exam (70%).

Continuous assessment: The student has to solve along the course and supervised by the professor, several exercises and problems, both in the classroom (during school hours), and beyond.

Final exam: The final exam consists of some questions and problems similar to those that have been raised and resolved in class.

Regulations for carrying out activities

Continuous assessment: Failure to perform a continuous assessment activity in the scheduled dates will result in a zero mark in that activity.

Final exam: The final exam will be an open book exam.
Bibliography

Basic:


Complementary:


