Course guide
250957 - ELEFINFLUI - Finite Elements in Fluids

Unit in charge: Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.
Degree: MASTER'S DEGREE IN NUMERICAL METHODS IN ENGINEERING (Syllabus 2012). (Compulsory subject). ERASMUS MUNDUS MASTER'S DEGREE IN COMPUTATIONAL MECHANICS (Syllabus 2013). (Optional subject).

Academic year: 2022 ECTS Credits: 5.0 Languages: English

LECTURER
Coordinating lecturer: MATTEO GIACOMINI
Others: MATTEO GIACOMINI, ANTONIO HUERTA CEREZUELA

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
8378. Practical numerical modeling skills. Ability to acquire knowledge on advanced numerical modeling applied to different areas of engineering such as: civil or environmental engineering or mechanical and aerospace engineering or bioengineering or Nanoengineering and naval and marine engineering, etc..
8379. Knowledge of the state of the art in numerical algorithms. Ability to catch up on the latest technologies for solving numerical problems in engineering and applied sciences.
8380. Materials modeling skills. Ability to acquire knowledge on modern physical models of the science of materials (advanced constitutive models) in solid and fluid mechanics.
8382. Experience in numerical simulations. Acquisition of fluency in modern numerical simulation tools and their application to multidisciplinary problems engineering and applied sciences.
8383. Interpretation of numerical models. Understanding the applicability and limitations of the various computational techniques.
8384. Experience in programming calculation methods. Ability to acquire training in the development and use of existing computational programs as well as pre and post-processors, knowledge of programming languages ??and of standard calculation libraries.

TEACHING METHODOLOGY

The course consists of 0,6 hours per week of classroom activity (large size group) and 1,2 hours weekly with half the students (medium size group).

The 0,6 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

The 1,2 hours in the medium size groups is devoted to solving practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

The rest of weekly hours devoted to laboratory practice.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENeA: content, program of learning and assessment activities conducted and literature.

Although most of the sessions will be given in the language indicated, sessions supported by other occasional guest experts may be held in other languages.
LEARNING OBJECTIVES OF THE SUBJECT

This course covers the essential theoretical aspects as well as their practical uses, specially for specific techniques for the Euler and Navier-Stokes equations.

* To learn the theoretical and practical fundamentals of the finite elements method applied to the dynamics of fluids to identify the basic theoretical aspects and their inherent computational aspects. * To learn the fundamentals of the numerical approximations in fluid dynamics: The equations, the spatial and temporal discretisations and the most relevant mathematical aspects, such as the stabilisation of convection and incompressibility condition; understanding of the most important aspects of spatial and temporal discretisation as well as identifying the correct boundary conditions and the most suitable method for the solution of different fluid dynamics problems. * The students will develop practical skills to work with tensors and formulate and develop the analysis of diverse problems of fluids in engineering.

* Conservation Equations.
* Stabilisation of the stationary convection equation
* Temporal integration of the transient transport equation.
* Compressible flow.
* Transient convection diffusion problems
* Incompressible Viscous flow.
* Modeling of turbulence.
* Advanced subjects

Learning resources:

This course covers the essential theoretical and practical aspects of the numerical approximation of partial differential equations modeling flow problems, specifically focusing on Euler and Navier-Stokes equations.

Learning objectives: be able to understand the fundamentals of mathematical modeling the motion of fluids, construct numerical algorithms to simulate convection-diffusion-reaction phenomena, understand the numerical difficulties and basic methods to approximate incompressible flows (Stokes and Navier-Stokes equations) and purely convective inviscid flows (Euler equations). More specifically:
- describe, predict and formulate techniques for steady linear scalar convection-diffusion-reaction problems,
- understand stabilization techniques for convection-dominated flows,
- formulate techniques for inviscid flows,
- understand the major difficulties in handling hyperbolic equations and the concept of well-posed Euler problem,
- describe, predict and formulate techniques for incompressible flows,
- understand the major difficulties in solving Stokes and Navier-Stokes equations.

Teaching material
- Class notes

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided activities</td>
<td>5.0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>15.0</td>
<td>12.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>17.5</td>
<td>14.00</td>
</tr>
<tr>
<td>Self study</td>
<td>80.0</td>
<td>64.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>7.5</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h
CONTENTS

Review of basic concepts

Description:
Description of the flow motion equations
Weak form Discretization Elementary matrices and assembly. Numerical integration Reference element

Full-or-part-time: 7h 11m
Theory classes: 1h
Practical classes: 2h
Self study : 4h 11m

Steady convection-diffusion problems

Description:
Analysis of the convection-diffusion equation 1D. Effect of the Péclet number and need for stabilization

Full-or-part-time: 14h 23m
Theory classes: 1h
Practical classes: 2h
Laboratory classes: 3h
Self study : 8h 23m

Pure convection problems

Description:
Classical techniques of temporal and space discretization: theta-methods and Galerkin discretization
Higher-order time integration schemes.
Discretization using least-squares approximation.
Stability and accuracy (Courant number).
Solving problems 1D and 2D to understand the properties of stability and precision. Influence of Couran's number.

Full-or-part-time: 14h 23m
Theory classes: 1h
Practical classes: 2h
Laboratory classes: 3h
Self study : 8h 23m

Compressible flow problems

Description:
Nonlinear hyperbolic scalar equations: weak solutions. Discretization in time and space. Basic properties of Euler equations. Boundary conditions
Introduction to Riemann Solvers for nonlinear hyperbolic equations
Solution of the Burgers equation.

Full-or-part-time: 16h 48m
Theory classes: 1h 30m
Practical classes: 3h
Laboratory classes: 2h 30m
Self study : 9h 48m
Evaluation

Full-or-part-time: 9h 36m
Laboratory classes: 4h
Self study : 5h 36m

Viscous incompressible flow problems

Description:
Inf-sup condition. Temporary and spatial discretization.
Weak form using a mixed formulation. Stabilized formulations.
Efficient techniques for transient viscous incompressible flows
Cavity flow problem. Stable and unstable mixed elements. Effect of the name of Reynolds

Full-or-part-time: 21h 36m
Theory classes: 2h
Practical classes: 4h
Laboratory classes: 3h
Self study : 12h 36m

Discontinuous Galerkin

Description:
Basic concepts on modern discontinuous Galerkin methods
Formulation and advantages of the hybridizable discontinuous Galerkin for flow problems
Implementation details on HDG

Full-or-part-time: 12h
Theory classes: 1h
Practical classes: 2h
Laboratory classes: 2h
Self study : 7h
GRADING SYSTEM

The grade of the course is obtained from a continuous assessment during the module. This consists of several activities, both individual and in group, of incremental training, carried out during the module, both in and out of the classroom.

The final grade will be computed as follows:
- 30% written exam on the first part of the module (Test 1);
- 30% written exam on the second part of the module (Test 2);
- 40% classwork (Periodic assignments on practical and programming exercises).

The written tests will assess the assimilation of the fundamental concepts related to the learning objectives of the module and will consist of:
- theoretical questions on the numerical methods presented in class;
- practical exercises requiring to write the discrete formulation for a given method and problem;
- interpretation questions commenting on the expected performance of the methods starting from the theory.

The evaluation of the classwork will assess the incremental learning of the students and will be based upon:
- periodic assignments consisting of both written and programming exercises on the numerical methods seen during the module, to be submitted for correction;
- participation during lectures, exercise and practical classes.

For the distance learning version of the Master, classwork evaluation will only consider the submitted assignments.

EXAMINATION RULES.

The assignments must be submitted via ATEnA by the announced deadline. Late submissions or assignments submitted using other means will not be accepted and will be graded 0.

The assignments must be performed individually: students are encouraged to discuss about the assignments but the submitted work must be the result of one own efforts. Plagiarism in the assignments will be punished with a 0 in the classwork grade.

The written exams (tests 1 and 2) must be performed individually and will be closed-book. Plagiarism will be punished with a 0 in the module grade.

BIBLIOGRAPHY

Basic: