Degree competences to which the subject contributes

Specific:
- CTE7. Capability to understand and to apply advanced knowledge of high performance computing and numerical or computational methods to engineering problems.
- CTE10. Capability to use and develop methodologies, methods, techniques, special-purpose programs, rules and standards for computer graphics.
- CTE12. Capability to create and exploit virtual environments, and to the create, manage and distribute multimedia content.

Generic:
- CG4. Capacity for mathematical modeling, calculation and simulation in technology and engineering companies centers, particularly in research, development and innovation tasks in all areas related to Informatics Engineering.
- CG8. Capability to apply the acquired knowledge and to solve problems in new or unfamiliar environments inside broad and multidisciplinary contexts, being able to integrate this knowledge.

Transversal:
- CTR6. REASONING: Capacity for critical, logical and mathematical reasoning. Capability to solve problems in their area of study. Capacity for abstraction: the capability to create and use models that reflect real situations. Capability to design and implement simple experiments, and analyze and interpret their results. Capacity for analysis, synthesis and evaluation.

Learning objectives of the subject

1. To know how to develop a mathematical model of an articulated body system.
3. Learn to adapt and extend the DH formalism to describe the physical properties and mass distribution of an articulated body.
4. To understand and properly use the laws of dynamics of articulated systems.
5. Knowing how to use the Lagrange formalism to find static and dynamic equations.
6. Being able to identify and determine the relevant physical quantities (generalized coordinates and moments) of the dynamics in the Lagrangian formulation.
7. To be able to identify the relevant variables in systems subject to restricted dynamic conditions.
8. Knowing how make use of the Lagrange formalism in dynamics under restricted conditions.
9. To know and make proper use of computer mathematical methods for the integration of dynamic equations.
10. Being able to establish the generalized forces from an optimization problem of the cost function.
11. To be able to establish a cost function based on the generalized coordinates and moments that allow discriminating among the physically valid solutions, those that best suit the sought movement.
12. Being able to create a physically realistic animation, based on an optimization process under the conditions dictated by the dynamics equations.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>75h</th>
<th>Theory classes:</th>
<th>12h</th>
<th>16.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Practical classes:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory classes:</td>
<td>12h</td>
<td>16.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guided activities:</td>
<td>3h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self study:</td>
<td>48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

Content

Articulated rigid bodies systems. Denavit-Hartenberg Formalism.

Degree competences to which the content contributes:

Lagrange Dynamics. Generalized coordinates and momenta. Dynamics equations.

Degree competences to which the content contributes:

Constraint conditions. Equations for constrained movements.

Degree competences to which the content contributes:

Optimization. Objective function. Optimal physically realistic evolution generation.

Degree competences to which the content contributes:
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Theory classes</th>
<th>Practical classes</th>
<th>Laboratory classes</th>
<th>Guided activities</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of theme 1 of the course</td>
<td>7h</td>
<td>4h</td>
<td>1h</td>
<td>0h</td>
<td>0h</td>
<td>2h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of theme 2 of the course</td>
<td>6h</td>
<td>3h</td>
<td>1h</td>
<td>0h</td>
<td>0h</td>
<td>2h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of item 3 of the course</td>
<td>8h</td>
<td>4h</td>
<td>2h</td>
<td>0h</td>
<td>0h</td>
<td>2h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>7, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of theme 4 of the course</td>
<td>7h</td>
<td>3h</td>
<td>2h</td>
<td>0h</td>
<td>0h</td>
<td>2h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>8h</td>
<td></td>
<td></td>
<td></td>
<td>2h</td>
<td>6h</td>
</tr>
</tbody>
</table>
Description:
Written exercise.

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

| Continuous assessment | **Hours**: 4h
Guided activities: 0h
Self study: 4h |
|-----------------------|---------------|
| **Description**:
Evaluation of exercises presented in class.
Specific objectives:
1, 2, 3, 4 |

| Continuous assessment | **Hours**: 4h
Guided activities: 0h
Self study: 4h |
|-----------------------|---------------|
| **Description**:
Evaluation of exercises presented in class.
Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |

| Lab work | **Hours**: 10h
Guided activities: 2h
Self study: 8h |
|----------|---------------|
| **Description**:
Development of a lab activity.
Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |

| Lab work | **Hours**: 7h
Theory classes: 0h
Practical classes: 0h
Laboratory classes: 7h
Guided activities: 0h
Self study: 0h |
|-----------|---------------|
| **Description**:
Develop the scheduled laboratory work. |
270530 - ARCA - Realistic Animation of Articulated Bodies

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Study and preparatory work for lab sessions.

<table>
<thead>
<tr>
<th>Hours: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:
Students will study the material provided, and on the basis of the theoretical tools explained in class, prepare work to be held in the laboratory.

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Solving exercises and problems.

<table>
<thead>
<tr>
<th>Hours: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Description:
Personal work, solving problems and exercises

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Qualification system

The evaluation will consider three aspects:
- Continuous assessment of work done during the course, in solving exercises proposed in class.
- Evaluation of a lab exercise.
- An exam (theory and problems).

The course grade will be calculated according to the following weighted average:

course grade = 0.2 Continuous assessment + 0.4 lab grade + 0.4 exam grade

The assessment of competence CTR6 will be computed as the arithmetic mean of the grades assigned to this competence in the final exam and in the continuous assessment of course work.
270530 - ARCA - Realistic Animation of Articulated Bodies

Bibliography

Basic:
Casulleras, J. Apunts de teoria de Animació Realista de Cossos Articulats. Barcelona,

Complementary:
Casulleras, J. Col.leció d'exercicis i problemes en Animació Realista de Cossos Articulats. Barcelona,