270533 - ID - Digital Identity

Coordinating unit: 270 - FIB - Barcelona School of Informatics  
Teaching unit: 749 - MAT - Department of Mathematics  
Academic year: 2019  
Degree: MASTER'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2012). (Teaching unit Optional)  
ECTS credits: 3  
Teaching languages: Catalan, Spanish

Degree competences to which the subject contributes

Basic:  
CB7. Ability to integrate knowledges and handle the complexity of making judgments based on information which, being incomplete or limited, includes considerations on social and ethical responsibilities linked to the application of their knowledge and judgments.  
CB9. Possession of the learning skills that enable the students to continue studying in a way that will be mainly self-directed or autonomous.

Specific:  
CDG1. Capability to integrate technologies, applications, services and systems of Informatics Engineering, in general and in broader and multidisciplinary contexts.  
CTE4. Capability to design, develop, manage and evaluate mechanisms of certification and safety guarantee in the management and access to information in a local or distributed processing.

General:  
CG8. Capability to apply the acquired knowledge and to solve problems in new or unfamiliar environments inside broad and multidisciplinary contexts.  
CG9. Capacity to understand and apply ethical responsibility, law and professional deontology of the activity of the Informatics Engineering profession.

Transversal:  
CTR2. SUSTAINABILITY AND SOCIAL COMMITMENT: Capability to know and understand the complexity of the typical economic and social phenomena of the welfare society. Capacity for being able to analyze and assess the social and environmental impact.  
CTR6. REASONING: Capacity for critical, logical and mathematical reasoning. Capability to solve problems in their area of study. Capacity for abstraction: the capability to create and use models that reflect real situations. Capability to design and implement simple experiments, and analyze and interpret their results. Capacity for analysis, synthesis and evaluation.

Teaching methodology

Master classes in which the teacher will explain the different topics.  
Conferences given by experts on different topics related to the subject.  
Material will be provided so that the students can go deeply into the subjects of their interest.

Learning objectives of the subject

2. Learn about the most important applications of Digital Identity.  
3. Know some of the technologies used in this field.  
4. Knowing which are the most relevant standards in the field and their importance in interoperability.  
5. Know what legal implications these technologies can or can have.
### Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Theory classes: 27h</th>
<th>36.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Practical classes: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 48h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

### Content

#### Defining Digital Identity

**Degree competences to which the content contributes:**


#### Uses

**Degree competences to which the content contributes:**

**Description:** eAdministration. eHealth. eBusiness. Finances.

#### Technology

**Degree competences to which the content contributes:**

**Description:** PKI. Biometrics. Smart Cards. RFID. Identity Directories. Databases.

#### Interoperability Standars and Law.

**Degree competences to which the content contributes:**

**Description:** Normatives nacionals i internacionals.
# Planning of activities

## Lecture

**Hours:** 30h  
Theory classes: 20h  
Practical classes: 0h  
Laboratory classes: 0h  
Guided activities: 0h  
Self study: 10h

### Specific objectives:
1, 2, 3, 4, 5

## Presentations

**Hours:** 31h  
Theory classes: 7h  
Practical classes: 0h  
Laboratory classes: 0h  
Guided activities: 0h  
Self study: 24h

### Description:
Presentation of subjects chosen by the students

### Specific objectives:
1, 2, 3, 4, 5

## Demonstrate in the digital world our identity

**Hours:** 16h  
Theory classes: 0h  
Practical classes: 0h  
Laboratory classes: 0h  
Guided activities: 0h  
Self study: 16h

### Description:
Obtain a recognized digital identity (eg eDNI) and use it to sign a document.

## Qualification system

- Participación en clase: 25%
- Presentación de un tema relacionado con la materia elegidos por los estudiantes según sus intereses: 75%
Bibliography

Basic:
