Course guides
270614 - AGT - Algorithmic Game Theory

Unit in charge: Barcelona School of Informatics
Teaching unit: 723 - CS - Department of Computer Science.
Degree: MASTER'S DEGREE IN INNOVATION AND RESEARCH IN INFORMATICS (Syllabus 2012). (Optional subject).
Academic year: 2021 ECTS Credits: 6.0 Languages: English

LECTURER
Coordinating lecturer: MARIA JOSE SERNA IGLESIAS
Others: Segon quadrimestre:
MARIA DEL CARME ALVAREZ FAURA - 10
MARIA JOSE SERNA IGLESIAS - 10

PRIOR SKILLS
Basic knowledge of algorithm analysis methods (in particular asymptotic complexity).
Basic knowledge on algorithms. Linear Programming. Maximum flow. Local search. Graph and Network algorithms.
Basic knowledge on algebraic reasoning.
Basic knowledge on computational complexity, classes and reductions.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
CEE3.1. Capability to identify computational barriers and to analyze the complexity of computational problems in different areas of science and technology as well as to represent high complexity problems in mathematical structures which can be treated effectively with algorithmic schemes.
CEE3.2. Capability to use a wide and varied spectrum of algorithmic resources to solve high difficulty algorithmic problems.
CEE3.3. Capability to understand the computational requirements of problems from non-informatics disciplines and to make significant contributions in multidisciplinary teams that use computing.

General:
CG1. Capability to apply the scientific method to study and analyse of phenomena and systems in any area of Computer Science, and in the conception, design and implementation of innovative and original solutions.
CG3. Capacity for mathematical modeling, calculation and experimental designing in technology and companies engineering centers, particularly in research and innovation in all areas of Computer Science.
CG5. Capability to apply innovative solutions and make progress in the knowledge to exploit the new paradigms of computing, particularly in distributed environments.

Transversal:
CTR6. REASONING: Capacity for critical, logical and mathematical reasoning. Capability to solve problems in their area of study. Capacity for abstraction: the capability to create and use models that reflect real situations. Capability to design and implement simple experiments, and analyze and interpret their results. Capacity for analysis, synthesis and evaluation.

Basic:
CB6. Ability to apply the acquired knowledge and capacity for solving problems in new or unknown environments within broader (or multidisciplinary) contexts related to their area of study.
CB8. Capability to communicate their conclusions, and the knowledge and rationale underpinning these, to both skilled and unskilled public in a clear and unambiguous way.
CB9. Possession of the learning skills that enable the students to continue studying in a way that will be mainly self-directed or autonomous.
TEACHING METHODOLOGY

There will be two kinds of classes: theoretical sessions and practical sessions. On average, two hours per week are dedicated to theory and one hour per week to exercises. The teacher will allocate the hours in accordance to the subject matter.

The theory classes take the form of lectures in which the teacher sets out new concepts or techniques. Those are complemented with examples illustrating the introduced concepts. Sessions will consist of a presentation of the main topics of each content’s item, mainly based in selected original research papers.

A high level of students’ participation is expected at each session. Current lines of research in each topic will be discussed at the end of each topics’ presentation.

The practical classes are used to carry out exercises in which students take an active part. Usually teachers set the exercises in advance. Students are required to submit the exercises and then discuss the various solutions/alternatives in class.

LEARNING OBJECTIVES OF THE SUBJECT

1. Become acquainted with the main techniques and problems in the algorithmic game theory domain and identify their major properties.
2. Examine conditions under which cooperation and antagonism appear. Perform an analysis and extract the fundamental properties of problems from different domains in order to assess the suitability of a game theoretical analysis and its limitations.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>96,0</td>
<td>64.00</td>
</tr>
<tr>
<td>Theory classes</td>
<td>54,0</td>
<td>36.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction to Algorithmic game theory

Description: Centralized versus decentralized decisions. Games and Internet. Game types, solution concepts, strategies and equilibria. Social choice.

Cooperative game theory

Computational social choice

Description: The problem of aggregating preferences. Voting rules. Manipulation, control and bribery in voting systems.
Strategic games and computational aspects of Nash equilibria

Description:

Price of anarchy and price of stability

Description:

ACTIVITIES

Development of syllabus topics.

Description:
Development of syllabus topics and practice exercises.

Specific objectives:
1, 3

Full-or-part-time: 101h 30m
Theory classes: 28h
Practical classes: 13h
Guided activities: 5h 30m
Self study: 55h

Final Exam

Description:
Theory questions and problem-solving exam

Specific objectives:
1, 3

Full-or-part-time: 22h
Guided activities: 2h
Self study: 20h

Control 1

Description:
In class problem assignment

Specific objectives:
1, 3

Full-or-part-time: 16h
Guided activities: 1h
Self study: 15h
Control 2

Description:
In class problem assignment

Full-or-part-time: 16h
Guided activities: 1h
Self study: 15h

Presentation of a research paper

Description:
Optional activity. Presentation of a scientific journal article describing a research topic in some of the topics covered in the course or in other related areas of interest to the student.

Specific objectives:
1, 3

Full-or-part-time: 15h 30m
Guided activities: 0h 30m
Self study: 15h

GRADING SYSTEM

Grade = \(30\% (C1+C2)/2 + 70\% \text{ FT}\)

\(C1, C2\) = Graded in-class assignments. Each one is graded from 0 to 10.

\(\text{FT}\) = Final test (graded from 0 to 10) including all the contents of AGT.

BIBLIOGRAPHY

Basic:

Complementary: