Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 723 - CS - Department of Computer Science
Academic year: 2018
Degree: MASTER’S DEGREE IN INNOVATION AND RESEARCH IN INFORMATICS (Syllabus 2012). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Prior skills

Students are expected to have at least some basic background in the area of artificial intelligence and, more specifically, with the areas of Machine Learning and Computational Intelligence.
Some basic knowledge of probability theory and statistics would be beneficial.
Other than this, the course is open to students and researchers of all types of background.

Degree competences to which the subject contributes

Specific:
- CEC1. Ability to apply scientific methodologies in the study and analysis of phenomena and systems in any field of Information Technology as well as in the conception, design and implementation of innovative and original computing solutions.
- CEC3. Ability to apply innovative solutions and make progress in the knowledge that exploit the new paradigms of Informatics, particularly in distributed environments.

General:
- CG3. Capacity for mathematical modeling, calculation and experimental designing in technology and companies engineering centers, particularly in research and innovation in all areas of Computer Science.

Transversal:
- CTR4. INFORMATION LITERACY: Capability to manage the acquisition, structuring, analysis and visualization of data and information in the area of informatics engineering, and critically assess the results of this effort.
- CTR6. REASONING: Capacity for critical, logical and mathematical reasoning. Capability to solve problems in their area of study. Capacity for abstraction: the capability to create and use models that reflect real situations. Capability to design and implement simple experiments, and analyze and interpret their results. Capacity for analysis, synthesis and evaluation.

Teaching methodology

This course will build on different teaching methodology (TM) aspects, including:
- TM1: Expositive seminars
- TM2: Expositive-participative seminars
- TM3: Orientation for individual assignments (essays)
- TM4: Individual tutorization

Learning objectives of the subject

1. Presenting DM as a process that should involve a methodology id applied at its best.
2. Introducing the students to the new concept of DM for processes, called Process Mining.
3. Delving into some detail in one of the stages of DM: data exploration.
4. Dealing in detail with the problem of data visualization for exploration as a key issue in DM.
5. Introducing the students to the basics of probability theory as applied in Data Analysis and Knowledge Discovery (DAKD)
6. Introducing the students to the probabilistic variant of DAKD in the form of Statistical Machine Learning, both for
supervised and unsupervised learning models.
7. Dealing in detail with different unsupervised models for data visualization, including case studies.
8. Approaching the multi-faceted concept of data mining (DM) from different perspectives.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Theory classes:</th>
<th>Practical classes:</th>
<th>Laboratory classes:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>24h</td>
<td>12h</td>
<td>12h</td>
<td>6h</td>
<td>96h</td>
</tr>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>16.00%</td>
<td>8.00%</td>
<td>8.00%</td>
<td>64.00%</td>
</tr>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>16.00%</td>
<td>8.00%</td>
<td>8.00%</td>
<td>64.00%</td>
</tr>
</tbody>
</table>
Introduction to the concept of data mining (DM).

Degree competences to which the content contributes:

Description:
DM is a multi-faceted concept that requires discussion and clarification. We will do this at the beginning of the course.

DM as a methodology.

Degree competences to which the content contributes:

Description:
We argue that DM should not be focused on the concept of data analysis/modeling, but, instead, should be treated as a methodology with diverse inter-related stages.

DM for processes: Process Mining.

Degree competences to which the content contributes:

Description:
A new development in DM methodologies is that which deals with one specifically suited for processes. It is called Process Mining and will be described and discussed in this course.

Data exploration in DM.

Degree competences to which the content contributes:

Description:
One of the main stages of well-structures DM methodologies is Data exploration. It will be discussed as a preamble to data visualization.

Data visualization for exploration.

Degree competences to which the content contributes:

Description:
One of the aspects of the problem of data exploration is data visualization. It has a research 'life' of its own as it involves not only computer-based mathematical models, but also natural perception and processing.

Basics of probability theory in Data Analysis and Knowledge Discovery (DAKD)

Degree competences to which the content contributes:
For a long time in the last half-century, multivariate statistics and artificial intelligence (mostly in the field of machine learning) have developed in parallel without fully meeting. Statistical machine learning has bridged that field over the last two decades. We introduce it by first providing some basic principles of probability theory (Bayesian inference).

Statistical Machine Learning for DAKD: supervised models.

Degree competences to which the content contributes:

Description:
Once the basics of Bayesian inference are set, we will delve into the field of Statistical Machine Learning for IDA, starting with supervised learning models, with an emphasis on feed-forward artificial neural networks.

Statistical Machine Learning for DAKD: unsupervised models.

Degree competences to which the content contributes:

Description:
Once the basics of Bayesian inference and of Statistical Machine Learning for IDA in supervised models are set, we will continue with unsupervised models, focusing on self-organizing maps and related models.

Unsupervised models for data visualization, with case studies.

Degree competences to which the content contributes:

Description:
In the final item of the contents of the course, we will bring statistical machine learning and data visualization together by discussing some probabilistic unsupervised learning models for data visualization, including some case studies as an example.
Planning of activities

Essay on DAKD for DM

Description:
Students will have to write a research essay on the topic of DAKD for DM, with different options:
1. State of the art on a specific DAKD-DM topic
2. Evaluation of an DAKD-DM software tool with original experiments
3. Pure research essay, with original experimental content

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8

Hours: 3h
- Guided activities: 3h
- Self study: 0h

Introduction to Data Mining and its Methodologies

Description:
Introduction to Data Mining as a general concept and to its methodologies for practical implementation

Specific objectives:
1

Hours: 23h
- Theory classes: 9h
- Practical classes: 0h
- Laboratory classes: 0h
- Guided activities: 1h
- Self study: 13h

Process Mining

Description:
Introduction to the novel concept of Process Mining and its application within the DM framework.

Specific objectives:
2

Hours: 9h
- Theory classes: 3h
- Practical classes: 0h
- Laboratory classes: 0h
- Guided activities: 1h
- Self study: 5h

Data Visualization

Description:
As part of the DM stage of Data Exploration, we focus in the problem of Data Visualization.

Hours: 16h
- Theory classes: 6h
- Practical classes: 0h
- Laboratory classes: 0h
- Guided activities: 1h
- Self study: 9h
Specific objectives:
3, 4

Basics of probability theory for intelligent data analysis

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to probability theory for intelligent data analysis, with a focus on Bayesian statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>16h</td>
</tr>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 9h</td>
</tr>
</tbody>
</table>

Statistical Machine Learning methods

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The meeting of statistics and machine learning: Statistical Machine Learning methods, from the point of view of both supervised and supervised learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>31h</td>
</tr>
<tr>
<td>Theory classes: 12h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 18h</td>
</tr>
</tbody>
</table>

SML in data visualization, with case studies

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>We merge the topics of SML and data visualization, illustrating its use with some real case studies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 7, 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25h</td>
</tr>
<tr>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td>Guided activities: 1h</td>
</tr>
<tr>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>
270650 - DAKD - Data Analysis and Knowledge Discovery

Qualification system

The course will be evaluated through a final essay that will take one of these three modalities:
1. State of the art on an specific IDA-DM topic
2. Evaluation of an IDA-DM software tool with original experiments
3. Pure research essay, with original experimental content

Bibliography

Basic:

Complementary: