Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 747 - ESSI - Department of Service and Information System Engineering
Academic year: 2019
Degree: MASTER’S DEGREE IN INNOVATION AND RESEARCH IN INFORMATICS (Syllabus 2012). (Teaching unit Optional)
ECTS credits: 6

Prior skills
Basic knowledge on relational databases and SQL.
Specifically, it will be assumed knowledge on:
- UML class diagrams
- Relational algebra
- SQL queries
- Relational views
- B-tree operations (i.e., insertion and splits)
- Basic concepts on physical query optimization

Teaching methodology
The course comprises theory, and lab sessions.
Theory: The theory lectures comprise the teacher’s explanations and problem solving. The students will also have some contents to be read and prepared outside the classroom.
Laboratory: Mainly, the lab sessions will be dedicated to the practice (with and without computer) of the concepts introduced in the theory lectures, by means of exercises that will be done during the class time. Some tools will be used for the design and practice on a specific DBMS or tool (e.g., Oracle). There will be three project deliverables that will be done outside the class.

Learning objectives of the subject
1. Be able to model multidimensional data warehouses
2. Be able to apply specific physical design techniques for decisional systems
3. Be able to design and implement data migration processes (i.e., ETL)

Study load
<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 36h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Hours small group: 18h</td>
<td>12.00%</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Self study: 96h</td>
<td>64.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

Introduction

Degree competences to which the content contributes:

Description:
Comparison of operational and decisional systems; Metadata

Data warehousing architectures

Degree competences to which the content contributes:

Description:
Corporate Information Factory; DW 2.0

Multidimensional modeling and OLAP tools

Degree competences to which the content contributes:

Description:
Structure; Integrity constraints; Operations; Advanced concepts

Database physical design for analytical queries

Degree competences to which the content contributes:

Description:
Star-join and join indexes; Bitmaps; Materialized views; Spatio-temporal data

Extraction, Transformation and Load

Degree competences to which the content contributes:

Description:
Data quality; Integration; ETL management
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Description</th>
<th>Specific objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical lectures</td>
<td>50h</td>
<td>In these activities, the lecturer will introduce the main theoretical concepts of the subject. Besides lecturing, cooperative learning techniques will be used. These demand the active participation of the students, and consequently will be evaluated.</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Hands-on sessions</td>
<td>81h</td>
<td>The student will be asked to practice the different concepts introduced in the theoretical lectures. This includes problem solving either on the computer or on paper.</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Exam</td>
<td>19h</td>
<td>Written exam of the theoretical concepts introduced along the course.</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
Qualification system

Final Mark = 60% E + 40% P

P = Weighted average of the marks of the three project deliverables
E = Exam

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

http://it4bi-dc.ulb.ac.be

http://tdwi.org

http://cs.ulb.ac.be/conferences/ebiss.html