Course guide
270701 - CV - Computational Vision

Unit in charge: Barcelona School of Informatics
Teaching unit: 1004 - UB - (ENG)Universitat de Barcelona.

Degree: MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2017). (Compulsory subject).

Academic year: 2022 ECTS Credits: 5.0 Languages:

LEITERER

Coordinating lecturer: PETIA IVANOVA RADEVA

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEA6. Capability to understand the basic operation principles of Computational Vision main techniques, and to know how to use in the environment of an intelligent system or service.
CEA7. Capability to understand the problems, and the solutions to problems in the professional practice of Artificial Intelligence application in business and industry environment.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CEP5. Capability to design new tools and new techniques of Artificial Intelligence in professional practice.

Generical:
CG1. Capability to plan, design and implement products, processes, services and facilities in all areas of Artificial Intelligence.
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT6. REASONING: Capability to evaluate and analyze on a reasoned and critical way about situations, projects, proposals, reports and scientific-technical surveys. Capability to argue the reasons that explain or justify such situations, proposals, etc..

CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.

TEACHING METHODOLOGY

The course will be divided in a series of theory and practical sessions:

- Participatory theory sessions in which new concepts are introduced and discussed between students. Group discussion is strongly encouraged. Textbook chapters and research papers will be provided to facilitate debate and exchange of ideas.

- Practical sessions are devoted to solve problems, designing methods and developing prototypes. These sessions allow students to put into practice previously introduced concepts to gain further insight.
LEARNING OBJECTIVES OF THE SUBJECT

1. Develop practicum of computational vision.
2. Reach the basic and advanced knowledge of computational vision.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>16,0</td>
<td>12.80</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>16,0</td>
<td>12.80</td>
</tr>
<tr>
<td>Guided activities</td>
<td>5,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>8,0</td>
<td>6.40</td>
</tr>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

- Introduction to Computational Vision
- Image Processing
- Edges and contours detection
- Feature detection
- Feature Matching
- Face detection
- Face recognition
- Segmentation I
- Segmentation II
- Texture analysis
ACTIVITIES

Practicum deliverable 1

Description:
This activity consists of delivering the code and report corresponding to a series of exercises posed during the first block of the course.

Specific objectives:
1

Related competencies:
CEP5. Capability to design new tools and new techniques of Artificial Intelligence in professional practice.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT6. REASONING: Capability to evaluate and analyze on a reasoned and critical way about situations, projects, proposals, reports and scientific-technical surveys. Capability to argue the reasons that explain or justify such situations, proposals, etc.

Full-or-part-time: 18h
Laboratory classes: 9h
Self study: 9h
Practicum deliverable 2

Description:
This activity consists of delivering the code and report corresponding to the problem posed during the second block of the course.

Specific objectives:
1, 2

Related competencies:
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.
CG1. Capability to plan, design and implement products, processes, services and facilities in all areas of Artificial Intelligence.
CEA7. Capability to understand the problems, and the solutions to problems in the professional practice of Artificial Intelligence application in business and industry environment.
CEP5. Capability to design new tools and new techniques of Artificial Intelligence in professional practice.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CEA6. Capability to understand the basic operation principles of Computational Vision main techniques, and to know how to use in the environment of an intelligent system or service.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT6. REASONING: Capability to evaluate and analyze on a reasoned and critical way about situations, projects, proposals, reports and scientific-technical surveys. Capability to argue the reasons that explain or justify such situations, proposals, etc..
CT7. ANALYSIS Y SINTESIS: Capability to analyze and solve complex technical problems.

Full-or-part-time: 18h
Laboratory classes: 9h
Self study: 9h
Practicum deliverable 2

Description:
This activity consists of delivering the code and report corresponding to the problem posed during the third block of the course.

Specific objectives:

1, 2

Related competencies:

CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.

CG1. Capability to plan, design and implement products, processes, services and facilities in all areas of Artificial Intelligence.

CEA7. Capability to understand the problems, and the solutions to problems in the professional practice of Artificial Intelligence application in business and industry environment.

CEPS. Capability to design new tools and new techniques of Artificial Intelligence in professional practice.

CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.

CEA6. Capability to understand the basic operation principles of Computational Vision main techniques, and to know how to use in the environment of an intelligent system or service.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT6. REASONING: Capability to evaluate and analyze on a reasoned and critical way about situations, projects, proposals, reports and scientific-technical surveys. Capability to argue the reasons that explain or justify such situations, proposals, etc.

CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.

Full-or-part-time: 18h
Laboratory classes: 9h
Self study: 9h

GRADING SYSTEM

Students will be assessed based on their work in practical tasks (delivery of practices in groups of 2 students) and a final exam of theory. The weighting of the final mark will be proportional to the respective workloads of the practical tasks and the final exam of theory. Final grade: 60% practicum grade and 40% final exam grade.

BIBLIOGRAPHY

Basic: