Course guide

270704 - IMAS - Introduction to Multiagent Systems

Unit in charge: Barcelona School of Informatics
Teaching unit: 1042 - URV - Universitat Rovira i Virgili.
Degree: MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2017). (Compulsory subject).
Academic year: 2022
ECTS Credits: 5.0
Languages:

LECTURER

Coordinating lecturer: ANTONIO MORENO RIBAS
Others: Primer quadrimestre:
ANTONIO MORENO RIBAS - 11, 12

PRIOR SKILLS

Knowledge of basic Artificial Intelligence concepts.
Good programming skills in Java.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEA1. Capability to understand the basic principles of the Multiagent Systems operation main techniques , and to know how to use them in the environment of an intelligent service or system.
CEA8. Capability to research in new techniques, methodologies, architectures, services or systems in the area of ??Artificial Intelligence.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CEP4. Capability to design, write and report about computer science projects in the specific area of ??Artificial Intelligence.

General:
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.

TEACHING METHODOLOGY

The teaching methodologies employed in this course are:
- Lectures.
- Participative sessions.
- Supervision of practice sessions in the lab.
- Supervision and orientation in team work.
- Orientation of autonomous work.
- Personalised tutoring.
- Doubts sessions.
LEARNING OBJECTIVES OF THE SUBJECT

1. Acquisition of the basic theoretical concepts in the field of intelligent agents and multi-agent systems.
2. Design and implementation of a multi-agent in a team to solve a complex problem.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>8,0</td>
<td>6.40</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>16,0</td>
<td>12.80</td>
</tr>
<tr>
<td>Hours large group</td>
<td>16,0</td>
<td>12.80</td>
</tr>
<tr>
<td>Guided activities</td>
<td>5,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Self study</td>
<td>80,0</td>
<td>64.00</td>
</tr>
</tbody>
</table>

Total learning time: 125 h

CONTENTS

Intelligent Agents

Description:
Introduction to intelligent agents. Definition.
Architectures: reactive, deliberative, hybrid.
Properties: reasoning, learning, autonomy, proactivity, etc.
Tipology: interface agents, information agents, heterogeneous systems.

Multi-Agent Systems

Description:
ACTIVITIES

Practical exercise

Description:
Practical exercise (in teams) in which a multi-agent system must be developed.

Specific objectives:
2

Related competencies:
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CEP4. Capability to design, write and report about computer science projects in the specific area of Artificial Intelligence.
CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

Full-or-part-time: 40h
Self study: 40h

Theoretical exam

Description:
Examen of the theoretical content of the course

Specific objectives:
1

Related competencies:
CEA1. Capability to understand the basic principles of the Multiagent Systems operation main techniques, and to know how to use them in the environment of an intelligent service or system.
CEA8. Capability to research in new techniques, methodologies, architectures, services or systems in the area of Artificial Intelligence.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Full-or-part-time: 39h 54m
Self study: 39h 54m
Lectures

Description:
Theoretical lectures covering the content of the course

Specific objectives:
1

Related competencies:
CEA1. Capability to understand the basic principles of the Multiagent Systems operation main techniques, and to know how to use them in the environment of an intelligent service or system.
CEA8. Capability to research in new techniques, methodologies, architectures, services or systems in the area of Artificial Intelligence.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Full-or-part-time: 30h
Theory classes: 30h

Lab sessions

Description:
Work sessions in the computer lab

Specific objectives:
2

Related competencies:
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.
CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.
CEP4. Capability to design, write and report about computer science projects in the specific area of Artificial Intelligence.
CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

Full-or-part-time: 15h
Laboratory classes: 15h

GRADING SYSTEM

Final exam: 40%
Practical exercise, developed in teams: 60%. This exercise will include the analysis of the architectures and types of agents appropriate for the exercise (10%), an analysis of the most adequate coordination and negotiation mechanisms (20%) and a final oral and written presentation of the complete multi-agent system (30%). It is necessary to complete the practical exercise to pass the course.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Hyperlink:
- https://campusvirtual.urv.cat