Course guide
270709 - AHLT - Advanced Human Language Technologies

Unit in charge: Barcelona School of Informatics
Teaching unit: 723 - CS - Department of Computer Science.

Degree: MASTER'S DEGREE IN INNOVATION AND RESEARCH IN INFORMATICS (Syllabus 2012). (Optional subject).
MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2017). (Optional subject).

Academic year: 2021 ECTS Credits: 5.0 Languages:

LECTURER

Coordinating lecturer: LLUIS PADRO CIRERA

Others: Segon quadrimestre:
LLUIS PADRO CIRERA - 11
MARTA RUIZ COSTA-JUSSA - 11

PRIOR SKILLS

- Familiarity with basic concepts and methods of Natural Language Processing.
- Good understanding of basic concepts and methods of Machine Learning.
- Advanced programming skills.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CEA3. Capability to understand the basic operation principles of Machine Learning main techniques, and to know how to use on the environment of an intelligent system or service.
CEA5. Capability to understand the basic operation principles of Natural Language Processing main techniques, and to know how to use in the environment of an intelligent system or service.

Generical:
CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.

Transversal:
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT6. REASONING: Capability to evaluate and analyze on a reasoned and critical way about situations, projects, proposals, reports and scientific-technical surveys. Capability to argue the reasons that explain or justify such situations, proposals, etc..
CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.

Basic:
CB6. Ability to apply the acquired knowledge and capacity for solving problems in new or unknown environments within broader (or multidisciplinary) contexts related to their area of study.
CB8. Capability to communicate their conclusions, and the knowledge and rationale underpinning these, to both skilled and unskilled public in a clear and unambiguous way.
CB9. Possession of the learning skills that enable the students to continue studying in a way that will be mainly self-directed or autonomous.
TEACHING METHODOLOGY

The course will be structured around four different linguistic analysis levels: word level, phrase level, sentence level, and document level. Typical NLP tasks and solutions corresponding to each level will be presented. The first half of the course is devoted to “classical” statistical and ML approaches. The second half of the course revisits the same levels under a deep learning perspective.

Theoretical background and practical exercises will be developed in class.

Finally, students will develop a practical project in teams of two students. The goal of the project is to put into practice the methods learned in class, and learn how the experimental methodology that is used in the NLP field. Students have to identify existing components (i.e. data and tools) that can be used to build a system, and perform experiments in order to perform empirical analysis of some statistical NLP method.

LEARNING OBJECTIVES OF THE SUBJECT

1. Learn to apply statistical methods for NLP in a practical application
2. Understand statistical and machine learning techniques applied to NLP
3. Develop the ability to solve technical problems related to statistical and algorithmic problems in NLP
4. Understand fundamental methods of Natural Language Processing from a computational perspective

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes</td>
<td>15,0</td>
<td>25.00</td>
</tr>
<tr>
<td>Theory classes</td>
<td>30,0</td>
<td>50.00</td>
</tr>
<tr>
<td>Laboratory classes</td>
<td>15,0</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Total learning time: 60 h

CONTENTS

Statistical Models for NLP

Description:

Distances and Similarities

Description:

Sequence Prediction

Description:
Prediction in word sequences: PoS tagging, NERC. Local classifiers, HMM, global predictors, Log-linear models.
Syntactic Parsing

Description:
Parsing constituent trees: PCFG, CKY vs Inside/outside
Parsing dependency trees: CRFs for parsing, Earley algorithm

Document-level modelling

Description:
Document representation: from BoW to NLU.
Document similarities.
Document classification.

Deep Learning approaches - Introduction

Description:
Introduction to ANN for NLP
Lexical semantics. Word Embeddings

Deep Learning approaches - Word Sequences

Description:
PoS tagging, NERC

Deep Learning Approaches - Sentences

Description:
Sentence similarity, sentence classification. LSTM. BERT. Sentence embeddings

Deep Learning approaches - Document Level

Description:
Document similarity, document classification, document embeddings - doc2vec

Deep Learning Approaches - Machine Translation

Description:
Neural Machine Translation
ACTIVITIES

Course Introduction

Description:

Specific objectives:
2, 5

Full-or-part-time: 3h
Theory classes: 2h
Practical classes: 1h

Distances and Similarities

Description:

Specific objectives:
2, 5

Full-or-part-time: 8h
Theory classes: 5h
Practical classes: 3h

Sequence Models in NLP

Description:
These lectures will present sequence models, an important set of tools that is used for sequential tasks. We will present this in the framework of structured prediction (later in the course we will see that the same framework is used for parsing and translation). We will focus on machine learning aspects, as well as algorithmic aspects. We will give special emphasis to Conditional Random Fields.
Also Deep Learning models will be presented

Specific objectives:
2, 5

Full-or-part-time: 10h
Theory classes: 6h
Practical classes: 4h
Syntax and Parsing

Description:
We will present statistical models for syntactic structure, and in general tree structures. The focus will be on probabilistic context-free grammars and dependency grammars, two standard formalisms. We will see relevant algorithms, as well as methods to learn grammars from data based on the structured prediction framework.

Sentence similarity, sentence classification. LSTM. BERT. Sentence embeddings

Specific objectives:
2, 5

Full-or-part-time: 9h
Theory classes: 6h
Practical classes: 3h

Document-level modelling

Description:
Document representation: from BoW to NLU.
Document similarities.
Document classification
document embeddings - doc2vec

Specific objectives:
2, 5

Full-or-part-time: 6h
Theory classes: 4h
Practical classes: 2h

Neural Machine Translation

Description:
Neural Machine Translation

Specific objectives:
2, 5

Full-or-part-time: 6h
Theory classes: 4h
Practical classes: 2h

Final Exam

Specific objectives:
2, 3, 5

Full-or-part-time: 13h 30m
Guided activities: 3h
Self study: 10h 30m
Specific objectives:
1, 2, 5

Full-or-part-time: 45h
Self study: 45h

GRADING SYSTEM

Final grade = 0.5*FE + 0.5*LP

where

FE is the grade of the final exam

LP is the grade of the lab project

BIBLIOGRAPHY

Basic:
- Manning, C.; See, A. Natural language processing with deep learning [on line]. Stanford University, [Consultation: 11/05/2022]. Available on: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/.

RESOURCES

Hyperlink:
- http://www.lsi.upc.edu/~ageno/anlp