270742 - SOAS - Self Organizing Multiagent Systems

Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 1004 - UB - (ENG)Universitat de Barcelona
Academic year: 2019
Degree: MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2012). (Teaching unit Optional)
MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN ARTIFICIAL INTELLIGENCE (Syllabus 2017). (Teaching unit Optional)
ECTS credits: 4,5

Prior skills

It will help to know about MAS (Multi-Agent Systems)

Degree competences to which the subject contributes

Specific:

CEA1. Capability to understand the basic principles of the Multiagent Systems operation main techniques, and to know how to use them in the environment of an intelligent service or system.

CEA7. Capability to understand the problems, and the solutions to problems in the professional practice of Artificial Intelligence application in business and industry environment.

CEA9. Capability to understand Multiagent Systems advanced techniques, and to know how to design, implement and apply these techniques in the development of intelligent applications, services or systems.

CEP2. Capability to solve the decision making problems from different organizations, integrating intelligent tools.

CEP3. Capacity for applying Artificial Intelligence techniques in technological and industrial environments to improve quality and productivity.

CEP4. Capability to design, write and report about computer science projects in the specific area of Artificial Intelligence.

General:

CG3. Capacity for modeling, calculation, simulation, development and implementation in technology and company engineering centers, particularly in research, development and innovation in all areas related to Artificial Intelligence.

Transversal:

CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT7. ANALISIS Y SINTESIS: Capability to analyze and solve complex technical problems.

Teaching methodology

The course unit will be taught through a series of theory and practical sessions:

- Participatory theory sessions in which new concepts are introduced and discussed between students. Group discussion is strongly encouraged. Textbook chapters and research papers will be provided to facilitate debate and exchange of ideas.

- Practical sessions in which students put into practice previously introduced concepts to gain further insight. This objective will be achieved by solving problems, designing systems, and developing prototypes.

Learning objectives of the subject
1. Learning objectives referring to knowledge:
Students will acquire the capacity to determine which applications are compatible with the implementation of agent-oriented solutions and how these solutions can adapt automatically to periodic changes.

2. Objectives referring to abilities, skills:
Students will also become able to develop simulations of multi-agent systems and analyse how they perform globally.

4. Objectives referring to attitudes, values and norms:
Students will develop teamwork skills and will reflect on ethical / moral aspects associated to autonomous systems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 15h</th>
<th>13.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group: 15h</td>
<td>13.33%</td>
<td></td>
</tr>
<tr>
<td>Hours small group: 7h 30m</td>
<td>6.67%</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 3h</td>
<td>2.67%</td>
<td></td>
</tr>
<tr>
<td>Self study: 72h</td>
<td>64.00%</td>
<td></td>
</tr>
</tbody>
</table>

Content

Introduction to multi-agent systems

Degree competences to which the content contributes:

- Cooperative vs competitive agents
- Social models
- Organizations
- Institutions
- Applications

Description:

- Individual modelling
- Social analysis
- Tools & case studies

Agent-based simulation

Degree competences to which the content contributes:

Description:

- Normative Multi-Agent systems
- Moral agents
- Multi-Agent Reinforcement Learning.
270742 - SOAS - Self Organizing Multiagent Systems

Planning of activities

| Presentation and discussion of a research paper | Hours: 30h
Theory classes: 6h
Practical classes: 0h
Laboratory classes: 0h
Guided activities: 0h
Self study: 24h |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 1</td>
</tr>
</tbody>
</table>

Course practical assessment

| Hours: 68h
Theory classes: 2h
Practical classes: 0h
Laboratory classes: 6h
Guided activities: 0h
Self study: 60h |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 1, 2, 4</td>
</tr>
</tbody>
</table>

Theoretical knowledge acquisition

| Hours: 32h 06m
Theory classes: 8h
Practical classes: 14h
Laboratory classes: 0h
Guided activities: 0h 06m
Self study: 10h |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 1</td>
</tr>
</tbody>
</table>

Qualification system

Students will be assessed on in-class oral presentations and/or their work in practical assignments. Typically, marks for oral presentations will be awarded on an individual basis, whereas marks for practical assignments will be based on an assessment of the whole group. The weighting of the final grade will be proportional to the respective workloads of the two tasks.

Examination-based assessment: Students will submit a practical exercise for assessment at the end of the course unit.
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

http://www.ifaamas.org/index.html

http://www.cs.bath.ac.uk/~jap/CM30174/

http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/