280710 - Propulsion and Auxiliary Systems

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering
Academic year: 2020
Degree: MASTER'S DEGREE IN NAUTICAL SCIENCE AND MARITIME TRANSPORT MANAGEMENT (Syllabus 2016). (Teaching unit Compulsory)
MASTER'S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Castells Sanabra, Marcel·la
Others: Borén Altés, Clara

Opening hours
Timetable: Marcel·la Castells: By request at: mcastells@cen.upc.edu
Clara Borén: By request at: cboren@cen.upc.edu

Degree competences to which the subject contributes

Basic:
CB6. Possess knowledge and understanding that provide a basis or opportunity to be original in the development and / or application of ideas, often in a research context.
CB7. That the students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their study area.
CB8. Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.

Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.
280710 - Propulsion and Auxiliary Systems

Acquire a basic knowledge of engines and auxiliary ship systems as well as ship resistance calculation and ship power and ship fuel consumption.

On the other hand, one of the objectives of this subject is to provide the knowledge, understanding and proficiency of the competency "Operate remote controls of propulsion plant and engineering systems and services", competency required and defined in Section A-II/2-11 (Mandatory minimum requirements for certification of masters and chief mates on ships of 500 gross tonnage or more) of the Seafarers' Training, Certification and Watchkeeping (STCW) International Code.

This competence will be partially evaluated through the simulator in accordance with STCW Code.

Teaching methodology

MD1. Lectures
MD3. Cooperative learning
MD4. Self study by solving exercises
MD5. Learning based in problems / projects

Learning objectives of the subject

Acquire a basic knowledge of engines and auxiliary ship systems as well as ship resistance calculation and ship power and ship fuel consumption.

On the other hand, one of the objectives of this subject is to provide the knowledge, understanding and proficiency of the competency "Operate remote controls of propulsion plant and engineering systems and services", competency required and defined in Section A-II/2-11 (Mandatory minimum requirements for certification of masters and chief mates on ships of 500 gross tonnage or more) of the Seafarers' Training, Certification and Watchkeeping (STCW) International Code.

This competence will be partially evaluated through the simulator in accordance with STCW Code.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 45h</th>
<th>Hours large group:</th>
<th>45h</th>
<th>100.00%</th>
</tr>
</thead>
</table>

Last update: 02-03-2020
280710 - Propulsion and Auxiliary Systems

Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ship Resistance</td>
<td>33h</td>
<td>The resistance of ships can be predicted by several methods. This chapter will explain different kind of resistances and their influence on the final resistance of the ship.</td>
</tr>
<tr>
<td>2</td>
<td>Types of power in ships and efficiencies</td>
<td>17h</td>
<td>When a ship generates a certain power within the Engine Room, this power will be transmitted along the propeller shaft and eventually to the tips of the propeller blades. This chapter shows the powers between the Engine Room and the propeller tips (Effective power, thrust power, delivered power, shaft power, brake power and Indicated power) and will analyse losses of power enroute.</td>
</tr>
<tr>
<td>3</td>
<td>Ship Trails and Fuel consumption</td>
<td>8h</td>
<td>This chapter will calculate the ship trails, the types of fuel consumption (hour, mile and CV-hour) and the concepts of endurance and economical speed.</td>
</tr>
<tr>
<td>4</td>
<td>Marine Propulsion Systems</td>
<td>17h</td>
<td>This chapter will describe the operating principles of marine power plants (this knowledge is necessary in accordance with STCW Code A-II/2-11.1) and the general knowledge of marine engineering terms (in accordance with STCW Code A-II/2-11.3)</td>
</tr>
</tbody>
</table>
Chapter 5. Ship's auxiliary systems

Description:
Ships' auxiliary systems knowledge will be described in this chapter (this knowledge is necessary in accordance with STCW Code A-II/2-11.2).

Learning time: 25h
Guided activities: 9h
Self study: 16h

Chapter 6. Ship weather routing design and optimization

Description:
This chapter is oriented to provide skills for ship routing design and optimization (using SIMROUTE® software) to assess the impact of the meteo-oceanographic variables (such as wind, waves or currents) on ship navigation and to highlight the relevance of ship routing in terms of sailing time, fuel consumption and harmful emissions for the environment.

Learning time: 25h
Guided activities: 9h
Self study: 16h
Qualification system

The final score is the sum of the following partial grades:

\[\text{Nfinal} = 0.25 \text{Npf} + 0.25 \text{Npp} + 0.50 \text{Nca} \]

Nfinal: Final Score
Npf: score of final exam
Npp: score of partial exam
Nca: score of the continuous assessment

The partial and final exams consist of questions (long and short answers) associated to the course learning objectives, concerning knowledge or comprehension and of practical exercises.

The continuous assessment (0.5) is the result of the following assessment activities:

\[\text{Nac} = 0.2 \text{Nex} + 0.15 \text{Npra} + 0.15 \text{Nti} \]

Nex: Exercises
Npra: Engine room simulator practices
Nti: assignments and reports

The continuous assessment consists of different exercises and tasks carried out during the course. This type of assessment also includes tests. The assignments and reports can be individual or cooperative activities. These assignments include an oral presentation.

Examination and assessment of evidence of competence A-II/2-11 will be obtained from approved engine room simulator training.
Criteria of evaluate competence A-II/2-11: Plant, auxiliary machinery and equipment is operated in accordance with technical specifications and within safe operating limits at all times.

Regulations for carrying out activities

- You can’t pass the course if all test, work activities and continuous assessment are carried out and submitted.
- In any case, the student can use any kind of predesigned form in controls or tests.
- If the student does not carried out partial and/or final exam, he or she will be considered as: Not Presented.
- If student pass the partial exam, topics passed shall be approved and will not enter at the final exam.
Bibliography

Basic:

Complementary:

Others resources:

Computer material

Matlab Software (MathWorks)

Resource