280723 - Marine Renewable Energies and Energy Optimization

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 709 - EE - Department of Electrical Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN THE MANAGEMENT AND OPERATION OF MARINE ENERGY FACILITIES (Syllabus 2016). (Teaching unit Compulsory)
MASTER'S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Fuses Navarra, Victor
Others: Fuses Navarra, Victor

Opening hours
Timetable: To be defined depending on the availability of students and professor.

Prior skills
Knowledge on electrical and energy systems.

Degree competences to which the subject contributes

Basic:
CB7. That the students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their study area.
CB8. Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.
CB10. Students must possess the learning skills that enable them

Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.

CB10. Students must possess the learning skills that enable them
At the end of the course, students:
- Should know the main characteristics of renewable generation and energy storage technologies to be included in ships, as well as the associated management systems.
- Should know and utilize mathematical expressions for the sizing of renewable generating systems and energy storage technologies in ships.
- Should know how to utilize tools for the modeling and simulation of electrical systems, including renewable generation and energy storage technologies in ships.
- Should know how to define a project related to the conceptualization, sizing and utilization of renewable generating systems and energy storage technologies in ships.
<table>
<thead>
<tr>
<th>Study load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 45h</td>
</tr>
<tr>
<td>Hours large group:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>45h</td>
</tr>
<tr>
<td>100.00%</td>
</tr>
</tbody>
</table>
Content

1. Presentation of the subject. Introduction to the electrical plant for ships with renewable generation and energy storage technologies. Calculation of representative magnitudes.

Learning time: 7h
Theory classes: 1h 30m
Guided activities: 0h 30m
Self study: 5h

Description:
Introduction to the subject and review of fundamental concepts for the proper development of the subject.

Related activities:
Selection of the topic for the project to be developed individually during the course.

Specific objectives:
To review fundamental concepts.

2. Main operating principles, characteristics, technologies that can be found in the market, basic calculations for dimensioning, description of simulation models.

Learning time: 30h 30m
Theory classes: 8h
Guided activities: 3h 30m
Self study: 19h

Description:
Main operating principles, characteristics, technologies that can be found in the market, basic calculations for dimensioning, description of simulation models.

Related activities:
Project to be developed individually. Short practical activities.

Specific objectives:
To gain knowledge on renewable generation and energy storage technologies.

3. Management systems for renewable generation, energy storage and energy optimization.

Learning time: 7h 30m
Theory classes: 4h
Guided activities: 0h 30m
Self study: 3h

Description:
Management and monitoring systems associated to the renewable generation and energy storage technologies are described.

Related activities:
Project to be developed individually. Short practical activities.

Specific objectives:
To identify management technologies in ships and its importance and functionality.
Qualification system

Final exam = 40%
Short practical activities = 20%
Project = 40%

Regulations for carrying out activities

The usage of calculator is needed for the final exam. Reports for practical activities can be elaborated in groups. The project should be done individually. It is mandatory to assist to the final exam.

Bibliography

Basic: