Course guide
280802 - 280802 - Engineering for Ship and Ocean Systems

Unit in charge: Barcelona School of Nautical Studies
Teaching unit: 742 - CEN - Department of Nautical Sciences and Engineering.
709 - DEE - Department of Electrical Engineering.
Degree: MASTER'S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Compulsory subject).
Academic year: 2022 ECTS Credits: 5.0 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: VICENÇ RODRIGUEZ BARRAGUER
Others:
Primer quadrimestre:
AFRICA MARRERO - Grup: MUENO
VICENÇ RODRIGUEZ BARRAGUER - Grup: MUENO

PRIOR SKILLS
Specifics:
Capacity in: Systems Engineering and Naval Technology.

Apply multidisciplinary knowledge through study, experience and practice, with critical reasoning, to establish viable solutions to technical problems

Generals:
Knowledge of the facilities and their environment on board.

Capacity of detailed project according to the applicable regulations

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
MUENO_CE1. Ability to design ships suitable for the needs of the maritime transport of people and goods, and those of maritime defense and security
MUENO_CE3. Knowledge of the dynamics of the ship and of the naval structures, and ability to perform optimization analysis of the structure, the integration of the systems on board, and the behavior of the ship at sea and its maneuverability
MUENO_CE4. Ability to analyze alternative solutions for the definition and optimization of power plants and ship propulsion
MUENO_CE7. Ability to project ocean platforms and artifacts
MUENO_CE11. Knowledge of the specific operations and systems of fishing boats and the ability to integrate them into the projects of said boats
Generical:
MUENO_CG2. Ability to conceive and develop solutions that are technically, economically and environmentally appropriate to the needs of maritime or integral transportation of people and goods, of the use of oceanic resources and of the marine subsoil (fishing, energy, minerals, etc.), adequate use of the marine habitat and means of defense and maritime security.

MUENO_CG4. Capacity for the project of platforms and artifacts for the use of ocean resources.

MUENO_CG5. Ability to design and control the construction, repair, transformation, maintenance and inspection processes of previous mills.

MUENO_CG6. Ability to conduct research, development and innovation in naval and ocean products, processes and methods.

MUENO_CG7. Ability to integrate complex maritime systems and translation into viable solutions.

MUENO_CG8. Ability to analyze and interpret measurements, calculations, evaluations, appraisals, studies, reports, work plans and other similar works.

MUENO_CG13. Ability to develop the necessary engineering in rescue and rescue operations and in the design and use of the required means.

MUENO_CG14. Ability to analyze, assess and correct the social and environmental impact of technical solutions.

MUENO_CG15. Ability to organize and direct multidisciplinary work groups in a multilingual environment, and to generate reports for the transmission of knowledge and results.

Transversal:

CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Know and understand the complexity of economic and social phenomena typical of the welfare society, being able to relate welfare to globalization and sustainability; acquire skills to use in a balanced manner compatible technology, technology, economics and sustainability.

CT3. TEAMWORK: Ability to work as a member of an interdisciplinary team, either as a member or performing management tasks, with the aim of contributing to projects pragmatically and sense of responsibility, assuming commitments considering the resources available.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty, and critically evaluate the results of this management.

CT5. THIRD LANGUAGE Learning a third language, preferably English, with adequate oral and written and in line with the future needs of the graduates.

Basic:

CB6. Possess knowledge and understanding that provide a basis or opportunity be original in the development and / or application of ideas, often in a research context.

CB7. That the students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their study area.

CB8. Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.

CB9. That students can communicate their conclusions and the knowledge and Latest rationale underpinning to specialists and non Specialty clearly and unambiguously.

CB10. Students must possess the learning skills that enable them continue studying in a way that will be largely self-directed or autonomous.

TEACHING METHODOLOGY

Classroom sessions:
Master and participatory classes. Explanation of basic concepts and calculation methods on different systems.

Team work:
Development of a work on specific systems on board that involves searching for information, regulations, analysis, plans, jobs. Elaboration of concrete projects.

LEARNING OBJECTIVES OF THE SUBJECT

Acquire skills in the management, interpretation and execution of engineering projects applied to platforms and ships.
Increase the skills of autonomous learning to maintain and improve the competencies of naval engineering.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total learning time: 45 h

CONTENTS

PART I.1. Systems of government and manoeuvre of platforms and ships

Description:
- Propulsion and government equipment, and combined dynamics.
- Servo units.
- Offshore platforms transport.

Full-or-part-time: 14h
- Theory classes: 5h
- Guided activities: 2h
- Self study: 7h

PART I.2. Dynamic positioning and stability systems

Description:
- Marine operations.
- Dynamic positioning system.
- Vessels with DP and operations with DP.
- Offshore platforms positioning systems.
- Calculation of platforms stability.

Full-or-part-time: 14h
- Theory classes: 5h
- Guided activities: 3h
- Self study: 6h

PART I.3. Anchorage and mooring systems for platforms and ships

Description:
- Mooring and anchoring vessel systems.
- Mooring and anchoring platform systems.

Full-or-part-time: 8h
- Theory classes: 3h
- Guided activities: 2h
- Self study: 3h
PART I.4. Cargo management systems (liquid cargo and dry cargo)

Description:
- Loading and unloading equipment in different vessels: liquid loads, bulk loads, general cargo, ro-ro transports.

Full-or-part-time: 8h
- Theory classes: 3h
- Guided activities: 2h
- Self study: 3h

PART I.5. Dredging and drilling systems

Description:
- Dredging targets.
- Types of dredges and processes.
- Drilling process in Oil & Gas.
- Drilling units.

Full-or-part-time: 11h
- Theory classes: 4h
- Guided activities: 3h
- Self study: 4h

PART I.6. Specific equipment for ships

Description:
- Systems onboard passenger ships.
- Systems onboard combat ships.

Full-or-part-time: 8h
- Theory classes: 3h
- Guided activities: 2h
- Self study: 3h

PART II.1. Complementary techniques I

Description:
- Psychometry. Exercises
- Air conditioning and thermal conditioning of spaces (HVAC).
- Thermal balance.

Full-or-part-time: 17h
- Theory classes: 6h
- Guided activities: 4h
- Self study: 7h
PART II.2. Complementary techniques II

Description:
- Thermography applied to nautical technology.
- Measurement techniques. Examples.

Full-or-part-time: 6h
Theory classes: 2h
Guided activities: 1h
Self study: 3h

PART II.3. Auxiliary systems

Description:
- Types and management of fuels used on ships.
- Liquefied Natural Gas (LNG) in maritime mobility.
- Concrete examples.

Full-or-part-time: 17h
Theory classes: 6h
Guided activities: 4h
Self study: 7h

PART II.4. Essential and emergency systems

Description:
- Basic and emergency lighting.
- Contribution of LED lighting in maritime mobility.
- Examples of lighting design.

Full-or-part-time: 17h
Theory classes: 6h
Guided activities: 4h
Self study: 7h

PART II.5. Other specific systems

Description:
- Underwater works. Examples.
- Hyperbaric chamber.

Full-or-part-time: 5h
Theory classes: 2h
Guided activities: 1h
Self study: 2h
GRADING SYSTEM

The final grade is the sum of the following partial grades:

\[N_{\text{final}} = 0.40 \times N_{\text{pf}} + 0.40 \times N_{\text{pt}} + 0.20 \times N_{\text{ec}} \]

- \(N_{\text{final}} \): Final qualification
- \(N_{\text{pf}} \): Final test qualification
- \(N_{\text{pt}} \): Job qualification (one)
- \(N_{\text{ec}} \): Qualification of the exercises of the course (continuous evaluation)

EXAMINATION RULES.

It is mandatory to attend the evaluation activities and participate in the classes, activities and visits that take place during the course, will determine the continuous assessment note.

BIBLIOGRAPHY

Basic:

Complementary: