280803 - Oceanography

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2017
Degree: MASTER'S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Teaching unit Compulsory)
ECTS credits: 5
Teaching languages: Catalan

Teaching staff

Coordinator: Espino Infantes, Manel
Others: Espino Infantes, Manel
Gironella I Cobos, Francesc Xavier

Degree competences to which the subject contributes

Basic:
CB9. That students can communicate their conclusions and the knowledge and Latest rationale underpinning to specialists and non Speciality clearly and unambiguously
CB8. Students should be able to integrate knowledge and handle the complexity of making judgments based on information that, being incomplete or limited, includes reflections on the responsibilities social and ethical linked to the application of their knowledge and judgments.

CB6. Possess knowledge and understanding that provide a basis or opportunity be original in the development and / or application of ideas, often in a research context.
CB7. That the students can apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their study area.
CB10. Students must possess the learning skills that enable them continue studying in a way that will be largely self-directed or autonomous.
280803 - Oceanography

Specific:

CE8. (ENG) Conocimiento de los elementos de oceanografía física (olas, corrientes, mareas, etc.) necesarios para el análisis del comportamiento de las estructuras oceánicas, y de los elementos de las oceanografías química y biológica que deben ser tenidos en cuenta para la seguridad marítima y para el tratamiento de la contaminación, y del impacto ambiental producido por los buques y artefactos marinos.

Transversal:

CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Know and understand the complexity of economic and social phenomena typical of the welfare society, being able to relate welfare to globalization and sustainability; acquire skills to use in a balanced manner compatible technology, technology, economics and sustainability.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty, and critically evaluate the results of this management.

CT3. TEAMWORK: Ability to work as a member of an interdisciplinary team, either as a member or performing management tasks, with the aim of contributing to projects pragmatically and sense of responsibility, assuming commitments considering the resources available.

CT1. ENTREPRENEURSHIP AND INNOVATION: Knowing and understanding the organization of a company and the sciences that govern the activity; be able to understand the business rules and relationships between planning, industrial and commercial strategies, quality and profit.

Know and understand the mechanisms that scientific research is based, as well as the mechanisms and instruments of transfer of results between different socio-economic actors involved in the processes of R + D + i.

Learning objectives of the subject

Study load

| Total learning time: 45h | Hours large group: | 45h | 100.00% |
280803 - Oceanography

Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Oceanography</td>
<td>6h</td>
</tr>
<tr>
<td>- Theory classes: 3h</td>
<td></td>
</tr>
<tr>
<td>- Self study: 3h</td>
<td></td>
</tr>
<tr>
<td>Marine Geology</td>
<td>8h</td>
</tr>
<tr>
<td>- Theory classes: 2h</td>
<td></td>
</tr>
<tr>
<td>- Practical classes: 1h</td>
<td></td>
</tr>
<tr>
<td>- Guided activities: 2h</td>
<td></td>
</tr>
<tr>
<td>- Self study: 3h</td>
<td></td>
</tr>
<tr>
<td>Physical and chemical properties of sea water</td>
<td>15h</td>
</tr>
<tr>
<td>- Theory classes: 4h</td>
<td></td>
</tr>
<tr>
<td>- Practical classes: 1h</td>
<td></td>
</tr>
<tr>
<td>- Guided activities: 5h</td>
<td></td>
</tr>
<tr>
<td>- Self study: 5h</td>
<td></td>
</tr>
<tr>
<td>Meteorology and ocean circulation</td>
<td>26h</td>
</tr>
<tr>
<td>- Theory classes: 7h</td>
<td></td>
</tr>
<tr>
<td>- Practical classes: 2h</td>
<td></td>
</tr>
<tr>
<td>- Guided activities: 10h</td>
<td></td>
</tr>
<tr>
<td>- Self study: 7h</td>
<td></td>
</tr>
</tbody>
</table>

Description:

Introduction to Oceanography: Presentation of the subject. Introduction to the concepts of physical oceanography, chemical oceanography, geological oceanography and biological scenography. History of the Oceanography.

Marine Geology: The bathymetry of the ocean: continental margins and ocean basins. Geophysical techniques for prospecting the ocean floor. Sedimentation in the ocean. Techniques for sampling sediment in the background.

Meteorology and ocean circulation: Atmospheric processes and general wind circulation. Surface ocean currents: wind currents, inertial currents, geostrophic currents and mesoscale currents. Thermohaline deep circulation. Techniques for measuring ocean currents.
Waves, Tsunamis and Seiches

Learning time: 19h
- Theory classes: 6h
- Practical classes: 3h
- Guided activities: 5h
- Self study: 5h

Description:

Tides and currents

Learning time: 16h
- Theory classes: 4h
- Practical classes: 2h
- Guided activities: 5h
- Self study: 5h

Description:

Marine Ecology

Learning time: 9h
- Theory classes: 2h
- Practical classes: 1h
- Guided activities: 3h
- Self study: 3h

Description:
Habitats in the Ocean. Classification of marine organisms. Functioning of marine ecosystems. Trophic chains and types of ecosystems. Coastal outcrops and productivity in the ocean.
Marine pollution

Learning time: 26h

- Theory classes: 3h
- Practical classes: 3h
- Guided activities: 11h
- Self study: 9h

Description:

Bibliography

Basic:

Complementary: