280821 - Marine Foundations

Coordinating unit: 280 - FNB - Barcelona School of Nautical Studies
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2019
Degree: MASTER’S DEGREE IN NAVAL AND OCEAN ENGINEERING (Syllabus 2017). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: MARCOS ARROYO ALVAREZ DE TOLEDO
Others: Segon quadrimestre:
MARCOS ARROYO ALVAREZ DE TOLEDO - 1
CARLOS MARIA LOPEZ GARELLO - 1
ANNA RAMON TARRAGONA - 1
ENRIQUE EDGAR ROMERO MORALES - 1

Opening hours
Timetable: Mondays from 11:00h to 13:00h; by appointment

Degree competences to which the subject contributes

Basic:
CB6. Possess knowledge and understanding that provide a basis or opportunity
be original in the development and / or application of ideas, often in a
research context.
CB7. That the students can apply their knowledge and
ability to solve problems in new or unfamiliar environments
within broader (or multidisciplinary) contexts related to their
study area.
CB8. Students should be able to integrate knowledge and handle
the complexity of making judgments based on information that, being
incomplete or limited, includes reflections on the responsibilities
social and ethical linked to the application of their knowledge and judgments.

Students should be able to integrate knowledge and handle
the complexity of making judgments based on information that, being
incomplete or limited, includes reflections on the responsibilities
280821 - Marine Foundations

Familiarity with basic soil mechanics principles relevant for offshore foundation design
Familiarity with offshore geotechnical site investigation procedures and instruments. Awareness of main geohazards affecting offshore developments.
Familiarity with pile design procedures relevant for the offshore environment. Knowledge of alternative offshore foundation types

Teaching methodology

4 different type of face-to-face sessions are included in the unit:
1. Theoretical session (T). In which the information relevant to the different topics covered in the syllabus is exposed and discussed in the classroom
2. Exercise session (P). Dedicated to solve application exercises in the classroom
3. Laboratory session (L). Taken place in the soil mechanics laboratory where the class is divided in teams to perform simple soil mechanics tests.
4. Personal work presentation (E). The students present the results of their own research work at the classroom.

The students are expected to
1. Study the contents of the theoretical and exercise sessions
2. Attend the laboratory sessions and report back on their activity during them
3. Hand back a design exercise assigned by groups. The exercise typically consists on the evaluation of some foundation design problem with help from commercial “ad hoc” software (OPILE)
4. Hand back ad present a short research assignment which is distributed in the classroom (individually or to two persons, depending on its difficulty and length)

Learning objectives of the subject

Familiarity with basic soil mechanics principles relevant for offshore foundation design
Familiarity with offshore geotechnical site investigation procedures and instruments. Awareness of main geohazards affecting offshore developments.
Familiarity with pile design procedures relevant for the offshore environment. Knowledge of alternative offshore foundation types
# Study load

| Total learning time: 45h | Hours large group: | 45h | 100.00% |
# 280821 - Marine Foundations

## Content

### Introduction

**Learning time:** 3h
- Theory classes: 3h

**Description:**
- Offshore foundations: tipology.
- The offshore geotechnical environment.
- Geohazards
- Normatives

### Soil mechanics

**Learning time:** 12h
- Theory classes: 6h
- Laboratory classes: 6h

**Description:**
- Soil description and classification.
- Groundwater flow and permeability.
- Soil strength
- Soil stiffness

**Related activities:**
- Laboratory 1: identification of soils
- Laboratory 2: flux of water through soils

**Specific objectives:**
- Familiarize the student with the fundamental concepts of soil mechanics relevant for the offshore environment

### Offshore site investigations

**Learning time:** 4h 30m
- Theory classes: 4h 30m

**Description:**
- Geophysics
- Probing: the CPTu. Other probes
- Sampling techniques
- Laboratory testing

**Related activities:**
- Some topics may be developed through individual research work

**Specific objectives:**
- Gain familiarity with the techniques of geotechnical investigation relevant for the offshore environment
The final grade (0-10) is obtained as a weighted average of the following items:

1. Laboratory (attendance) 10%
2. Laboratory (reports) 10%
3. Group design exercise (15%)
4. Research report and presentation (15%)
5. Final exam (50%)

The final exam typically includes an exercise and several theoretical questions.

### Bibliography

**Basic:**


**Others resources:**

- OPILE (Software for pile design oriented to offshore structures)